共查询到20条相似文献,搜索用时 15 毫秒
1.
Vacuum plasma spraying (VPS) was used to spray a Cr3C2-NiCr coating of ∼ 150, 300 and 450 μm in thickness onto a plain carbon steel substrate, employing a commercially available Cr20Ni9.5C powder. The splat microstructures observed in the coating were found to consist of a NiCr matrix with a predominant Cr3C2 phase, besides Cr7C3 and Cr2O3. The adhesion of the coating to the substrate was evaluated by means of interfacial indentation techniques. It has been found that the interfacial toughness value changes from 7.6 to 10.1 MPa m1/2 when the thickness increases from 150 to 450 μm. Also, it has been found that the parameter Kcao, determined by linear regression from the Kca versus 1 / e2 curve by means of the interfacial indentation model advanced by Chicot et al., has a value of ∼ 9.8 MPa m1/2. 相似文献
2.
在CuCrZr合金表面等离子喷涂Cr3C2-NiCr涂层、NiAl/Cr3C2-NiCr复合涂层.测试涂层与基体间的结合强度及涂层的热震性能,结合SEM,EDS和XRD等分析涂层物相变化,探讨涂层的结合机理.结果表明,涂层的结合强度均较高;Ni-Al发生放热反应,生成Al4Ni3,Al3Ni2,AlNi3,剩余的铝与铜反应生成Cu3Al2,CuAl2,CuAl,局部区域形成微冶金结合;二种涂层均以机械锚合为主,在参数适合且基体相同的情况下,涂层结合强度取决于涂层材料的力学性能;相同试验条件下,NiAl/Cr3C2-NiCr复合涂层的热震性能优于Cr3C2-NiCr涂层. 相似文献
3.
采用超音速火焰喷涂(high velocity oxy-fuel,HVOF)技术在Q235钢基体上制备了Cr3C2-Ni Cr涂层,借助X射线衍射(XRD)和扫描电镜(SEM)等方法分析了涂层的相组成和微观组织,研究涂层与镀铬层在质量分数为3.5%Na Cl溶液中的腐蚀性能.结果表明,涂层主要由Cr3C2,Cr7C3和Ni Cr等相组成,涂层的致密度高,层状结构明显,含少量孔隙.阻抗谱曲线表明,Cr3C2-Ni Cr涂层对基体的保护作用良好,在Na Cl溶液中浸泡时间40 d后,极化电阻为2.8 kΩ,而镀铬层失效严重,极化电阻为300Ω.极化曲线表明,Cr3C2-Ni Cr涂层在浸泡周期内腐蚀电位平稳,腐蚀电流缓慢增加.镀铬层的腐蚀电位下降较快,腐蚀速率成倍增加.孔洞是影响Cr3C2-Ni Cr涂层耐蚀性的重要原因,影响镀铬层耐蚀性的主要原因是裂纹. 相似文献
4.
Lingzhong Du Chuanbing HuangWeigang Zhang Tiegang LiWei Liu 《Surface & coatings technology》2011,205(12):3722-3728
NiCr clad hexagonal BN powder (NiCr/hBN) was added to NiCr/Cr3C2 feedstock to improve the tribological properties of chromium carbide nichrome coating. The microstructure, flowability and apparent density of the composite powder, as well as the structure and mechanical properties of the plasma sprayed coating were characterized. The friction and wear behavior of the NiCr/Cr3C2-NiCr/hBN coating from ambient temperature up to 800 °C was evaluated on a ball-on-disk wear tester and compared with that of NiCr/Cr3C2 coating and NiCr/Cr3C2-NiCr/BaF2·CaF2 coating. The results show that NiCr cladding can reduce the decarburization of Cr3C2 and oxidation of hBN during the thermal spray. The main wear mechanisms of the NiCr/Cr3C2-NiCr/hBN composite coating are ploughing and adhesive wear. Layered hexagonal BN particle reduce the direct contact and severe adhesion between friction pairs, thus decreasing the friction coefficient. The NiCr/Cr3C2-NiCr/hBN composite coating shows a promising application in the high temperature environment with the request of both wear resistance and friction reduction. 相似文献
5.
In the present work the corrosion resistance of micro-cracked hard chromium and Cr3C2-NiCr (HVOF) coatings applied on a steel substrate have been compared using open-circuit potential (EOC) measurements, electrochemical impedance spectroscopy (EIS) and polarization curves. The coatings surfaces and cross-section were characterized before and after corrosion tests using optical microscopy (OM) and scanning electron microscopy (SEM). After 18 h of immersion, the open-circuit potential values were around −0.50 and −0.25 V/(Ag∣AgCl∣KClsat) for hard chromium and Cr3C2-NiCr, respectively. The surface analysis done after 12 h of immersion showed iron on the hard chromium surface inside/near surface cracks, while iron was not detected on the Cr3C2-NiCr surface even after 18 h. For longer immersion time hard chromium was more degraded than thermal sprayed coating. For hard chromium coating a total resistance values between 50 and 80 kΩ cm2 were measured and two well-defined time constants were observed, without significant change with the immersion time. For Cr3C2-NiCr coating the total impedance diminished from around 750 to 25 kΩ cm2 as the immersion time increased from 17 up to 132 h and two overlapped time constants were also observed. Polarization curves recorded after 18 h of immersion showed a lower current and higher corrosion potential for Cr3C2-NiCr coating than other samples studied. 相似文献
6.
Wojciech ?órawski 《Surface & coatings technology》2008,202(18):4453-4457
The objective of this study is to characterize the tribological properties of plasma and HVOF sprayed WC12 Co and Cr3C2 25(Ni20Cr) coatings. The coefficient of friction and scuffing resistance of coatings were found using the tests of ball-on-disc and Falex routines. The chemical composition of coatings was characterized using energy dispersive spectrometry (EDS) performed on the cross-sections of the coatings. The surface of deposits after measuring of friction coefficient was observed using scanning electron microscope (SEM). It was found out that the following properties of the coatings influence the scuffing process: (i) hardness; (ii) friction coefficient; (iii) method of spraying; and (iv) coatings' morphology. The WC12Co coating sprayed using HVOF method showed the best scuffing resistance and the most homogeneous structure. 相似文献
7.
K. A. Khor C. T. Chia Y. W. Gu F. Y. C. Boey 《Journal of Thermal Spray Technology》2002,11(3):359-364
There is a trend to design the turbine coating and the substrate as in integral, layered, engineering assembly. Under the
harsh environment of the turbine engine, a failure in one component can quickly lead to failure in other components. Materials
that are used in structural applications are prone to mechanical vibration, which, when not attenuated, will lead to fatigue
of components and shortening of life cycle. Therefore, it is necessary to examine the thermal stability and dynamic mechanical
properties of coatings under dynamic conditions. In addition to these noise reduction and vibration amplitude control motivated
objectives, however, mechanical energy dissipation processes also find intrinsic applications in cases for which a thorough
understanding of the mechanisms responsible for the damping response of the material is required. This article describes the
damping behavior and mechanisms that exist in plasma sprayed NiCoCrAlY coatings. 相似文献
8.
Cr3C2-NiCr涂层是中高温下理想的耐磨、抗氧化、耐蚀涂层,常用于高温下的燃气冲蚀磨损、磨粒磨损、微动磨损、硬表面磨损等场合.文中采用超音速等离子喷涂的方法在CuCrZr合金表面制备Cr3C2-NiCr涂层,并采用超声冲击的方法对涂层进行后处理.结果表明,经超声冲击处理后,涂层孔隙率由2.34%降低至1.83%;涂层的平均显微硬度由8.9 GPa提高至9.6 GPa,且硬度分布更均匀;在650℃下进行热震试验,涂层的热震寿命显著提高,热震裂纹的扩展路径也发生了变化. 相似文献
9.
The role of microstructure in the high temperature oxidation mechanism of Cr3C2-NiCr composite coatings 总被引:1,自引:0,他引:1
Composites of Cr3C2-NiCr provide superior oxidation resistance to WC-Co composites, which has seen them applied extensively to components subjected to combined high temperature erosion and oxidation. This work characterises the variation in oxidation mechanism of thermally sprayed Cr3C2-NiCr composites at 700 °C and 850 °C as a function of heat treatment. Carbide dissolution during spraying increased the Ni alloy Cr concentration, minimising the formation of Ni oxides during oxidation. Compressive growth stresses resulted in ballooning of the oxide over the carbide grains. Carbide nucleation with heat treatment reduced the Ni alloy Cr concentration. The oxidation mechanism of the composite coating changed from being Cr based to that observed for NiCr alloys. 相似文献
10.
Cr3C2-NiCr thermal spray coatings are extensively applied to mitigate erosion at temperatures above 450-550 °C. The aim of this work was to extend the current comparison based knowledge towards a mechanistic interpretation of the high temperature erosion of Cr3C2 based thermal spray coatings. Coatings that span the range of industrial quality were assessed. They were eroded under high temperature (700 °C and 800 °C), aggressive (impact velocity 225-235 m/s) conditions designed to simulate the high velocity erodent impacts within a turbine environment. The influence on the erosion response of high temperature induced changes in the coating microstructure and composition with extended in-service exposure was assessed by heat treating selected samples to generate a steady state microstructure prior to testing. In spite of the marked variation in coating microstructure the erosion rates were comparable across the range of coatings tested. The significance of this conclusion is discussed in terms of the erosion mechanism. 相似文献
11.
In Part 1 of this two part series the variation in erosion mechanisms as a function of as-sprayed coating microstructure was presented. The oxidation resistance of Cr3C2-NiCr coatings means that they are used in high temperature applications where WC-Co based systems are no longer suitable. High temperature exposure has been shown to generate microstructural development in these coatings, leading to variations in coating hardness. In this work the effect of such coating development on the high velocity erosion response is investigated. The HVAF and HVOF coatings of Part 1 were heat treated for up to 30 days at 900 °C to generate a range of coating microstructures up to steady state. Erosion was performed under the same conditions as in Part 1. Heat treatment increased the ductility of the NiCr phase, enabling ductile erosion deformation to occur. Intersplat sintering reduced the significance of splat based erosion mechanisms and forced mass loss to become dictated by the phase microstructure. Such developments improved the quantified erosion resistance of both coating systems relative to the as-sprayed conditions. The coating microhardness was shown to be a poor indicator of erosion response across the range of coating microstructures investigated. 相似文献
12.
Cr3C2-NiCr thermal spray coatings are extensively used to mitigate high temperature erosive wear in fluidised bed combustors and power generation/transport turbines. The aim of this work was to characterise the variation in oxide erosion response as a function of the Cr3C2-NiCr coating microstructure. Erosion was carried out at 700 °C and 800 °C with erodent impact velocities of 225-235 m/s. The erosion behaviour of the oxide scales formed on these coatings, was influenced by the coating microstructure and erosion temperature. Development of the carbide microstructure with extended heat treatment lead to variations in the erosion-corrosion response of the Cr3C2-NiCr coatings. 相似文献
13.
利用等离子弧喷涂技术在结晶器CuNiCoBe基体上制备了Cr3C2-NiCr涂层,采用正交试验法研究了喷涂工艺参数对涂层与基体结合强度的影响,对拉伸断面的形貌和涂层的显微结构进行了观察和分析.结果表明,影响Cr3C2-NiCr涂层与CuNiCoBe基体结合强度的主次因素依次为:送粉速率>主气流量>喷涂距离>喷涂功率;经正交试验优化后的喷涂工艺参数为:喷涂距离90mm,主气流量56.6L/min,送粉速率20 g/min,喷涂功率25 kW;优化后,涂层与基体的结合强度可达18.5 MPa;涂层截面的显微硬度分布符合正态分布. 相似文献
14.
Cr3C2-NiCr and WC-Ni coatings are widely used for wear applications at high and room temperature, respectively. Due to the high corrosion resistance of NiCr binder, Cr3C2-NiCr coatings are also used in corrosive environments. The application of WC-Ni coatings in corrosive media is not recommended due to the poor corrosion resistance of the (pure Ni) metallic matrix. It is well known that the addition of Cr to the metallic binder improves the corrosion properties. Erosion-corrosion performance of thermal spray coatings is widely influenced by ceramic phase composition, the size of ceramic particles and also the composition of the metallic binder. In the present work, two types of HVOF thermal spray coatings (Cr3C2-NiCr and WC-Ni) obtained with different spray conditions were studied and compared with conventional micro-cracked hard chromium coatings. Both as-sprayed and polished samples were tested under two erosion-corrosion conditions with different erosivity. Tungsten carbide coatings showed better performance under the most erosive condition, while chromium carbide coatings were superior under less erosive conditions. Some of the tungsten carbide coatings and hard chromium showed similar erosion-corrosion behaviour under more and less erosive conditions. The erosion-corrosion and electrochemical results showed that surface polishing improved the erosion-corrosion properties of the thermally sprayed coatings. The corrosion behaviour of the different coatings has been compared using Electrochemical Impedance Spectroscopy (EIS) and polarization curves. Total material loss due to erosion-corrosion was determined by weight loss measurements. An estimation of the corrosion contribution to the total weight loss was also given. 相似文献
15.
Carbide based thermal spray coatings are routinely applied to mitigate erosion under industrial conditions. However, the mechanism of erosion response under aggressive high velocity impact conditions remains unclear. In this work Cr3C2-25%NiCr thermal spray coatings were eroded at an impact velocity of 150 m/s by 20-25 µm alumina grit. Coatings were deposited by High Velocity Air Fuel (HVAF) and High Velocity Oxygen Fuel (HVOF) thermal spray techniques to generate a range of coating quality spanning that applied industrially. In Part 1 of this two-part series, the mechanism of erosion as a function of coating composition and microstructure variation is discussed. The HVOF coating underwent significant in-flight dissolution of the carbide phase. The erosion response of the supersaturated NiCr matrix was characterised by brittle cracking and fracture. The HVAF coating retained a high carbide content with minimal phase dissolution. However, the rapid solidification of the matrix material made the coating prone to brittle interphase cracking during impact. On a larger scale, splat based erosion mechanisms played a significant role, especially in the HVOF coating. The mechanisms of impact response of these coatings were dependent upon the depth of erodent penetration and could not, therefore, be extrapolated from erosion testing at lower velocities. 相似文献
16.
Yikai Chen Xuebin Zheng Youtao Xie Heng Ji Chuanxian Ding 《Surface & coatings technology》2009,204(5):253-690
Implant-related infection is one of the common clinical complications that cause high rates of mortality and morbidity in orthopedic surgery. Endowing implant antibacterial properties is a useful method to reduce such infection. In this paper, vacuum plasma sprayed titanium coatings were treated by NaOH solution firstly, and then antimicrobial silver was introduced into the coatings by immersing in 0.02 mM (denoted as CA1), 0.06 mM (denoted as CA2) and 0.1 mM (denoted as CA3) Ag+ containing calcification solution. Antibacterial property of the treated titanium coatings was examined by employing three types of bacteria stains, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. X-Ray diffraction and scanning electron microscopy were used to observe the phase composition and surface morphology of the modified titanium coatings. Results showed that all of the three kinds of coatings exhibited more than 90.00% antibacterial ratio except CA1 to Staphylococcus aureus which is 63.30%. The release of silver in physiological environment was monitored and it was found that the excellent antibacterial property of the treated coatings was attributed to the release of silver. 相似文献
17.
Al2O3对等离子喷涂热障涂层高温氧化及热震性能的影响 总被引:2,自引:0,他引:2
采用等离子喷涂 (PS)在GH5 36高温合金基材上制备了典型的双层热障涂层 (TBCs)和两种分别加入了Al2 O3 陶瓷成分的复合热障涂层。典型的TBCs采用Ni2 2Cr10AlY连接层与 8%Y2 O3 稳定的 (8YPSZ)顶层的双层结构 ;多层涂层分别采用Al2 O3 与Ni2 2Cr10AlY复合的连接层和Al2 O3 与 8YPSZ复合的顶层。3种类型试样的10 0h ,10 0 0℃静态氧化及 10 5 0℃热震试验的结果分析表明 :8YPSZ Al2 O3 的复合氧障层具有最佳的氧化阻力 ;Ni2 2Cr10AlY 8YPSZ双层涂层的热震阻力最佳 ,氧化阻力最差 ;连接层采用Ni2 2Cr10AlY Al2 O3 复合涂层具有热震和静态氧化条件下综合优良的高温热循环性能 相似文献
18.
采用超音速火焰喷涂(high-velocity oxygen-fuel, HVOF)技术,在1Cr18Ni9Ti不锈钢表面制备Cr3C2-NiCr金属陶瓷复合涂层. 研究了涂层的显微组织、相组成以及涂层和不锈钢的冲蚀行为和机理,探讨了冲蚀角与耐冲蚀性能的关系规律. 结果表明,涂层组织结构致密均匀,主要由Cr3C2以及少量的Cr7C3, Cr23C6和(Ni, Cr)固溶体相组成. Cr3C2-NiCr涂层的耐冲蚀性能随着冲蚀角的增大而减小,在低冲蚀角下涂层的破坏形式主要为微切削,重量损失较低,表现出优异的耐冲蚀性能. 随着冲蚀角的增大,冲蚀沙粒对涂层产生垂直冲击作用,粘结相与硬质相之间产生裂纹导致粘结相脱落,硬质相失去粘结相的支撑作用而裸露出来,在冲蚀沙粒的持续攻击下剥落,形成许多小冲蚀坑. 随着剥落硬质相数量的增加,小冲蚀坑逐步发展为大冲蚀坑,重量损失较大,耐冲蚀性能较差. 相似文献
19.
R. Soltani E. Garcia T. W. Coyle J. Mostaghimi R. S. Lima B. R. Marple C. Moreau 《Journal of Thermal Spray Technology》2006,15(4):657-662
Retaining nonmelted nanoparticles of zirconia in nanostructured coatings has been a challenge in the past. Recently an air
plasma spray process was developed to produce coatings that retain up to 30–35% by volume nonmelted particles, resulting in
a unique structure. The creep/sintering behavior of such thermal barrier coatings deposited from nanostructured feedstock
has been measured and compared with deposits produced from hot oven spherical particles (HOSP). Both feedstocks contain 6–8
wt.% Y2O3 as a stabilizer. Flexure and compression creep testing were conducted under several different loads and temperatures to obtain
creep exponents and parameters.
This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials
Park, OH, 2006. 相似文献
20.
利用二次回归正交组合设计法优化喷涂工艺参数,建立了等离子喷涂Al2O3p/NiCrBSi复合材料涂层冲蚀磨损失重率的二次回归方程.研究了等离子喷涂参数对涂层冲蚀磨损失重率的影响.结果表明,利用Matlab软件编程计算,优化等离子喷涂参数,明显提高了涂层的抗冲蚀磨损性能.为等离子喷涂制备以氧化铝(Al2O3)颗粒增强金属基(NiCrBSi)复合材料涂层(Al2O3p/NiCrBSi)的实际应用提供必要的理论依据和技术数据. 相似文献