首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents studies on the efficacy and on the limits of polypyrrole (Ppy) doped with either or [PMo12O40]3− as self-healing corrosion protecting coatings. The kinetics of the cathodic delamination were studied by means of the Scanning Kelvin Probe (SKP). This method, in combination with cyclic voltammetry, UV–visible spectroscopy (UV–vis) and X-ray photoelectron spectroscopy (XPS), shows a potential driven anion release from the Ppy coating that results in an inhibition of the corrosion process taking place in the defect. Thus, an intelligent release of inhibitor occurs only when the potential at the interface decreases. Inhibitor anions are released only due to an active defect. However, the release mechanism can be easily negatively affected by the presence of small cations and/or by too high pH values at the buried interface. Hence, such a self-healing coating has to be carefully designed in order to ensure an effective performance.  相似文献   

2.
The effect of the addition of multi-walled carbon nano-tubes (MWCNT) to epoxy and vinyl chloride/vinyl acetate copolymer coatings on their ability to protect the substrates was studied. Coatings were formulated from these resins with and without MWCNT reinforcement. Steel substrates were prepared and coated with each formulated coating and submerged in 5% NaCl solution to study their corrosion resistance by means of Electrochemical Impedance Spectroscopy (EIS). In addition, thin films from these polymers, with and without nano-reinforcement, were cast. Dogbone specimens were cut in order to study their mechanical properties. Some of these specimens were immersed in the NaCl solution for two weeks in order to compare their mechanical properties with samples not exposed to salt water. Optical microscopy was used to capture the progress of sample corrosion. EIS measurements showed that the addition of MWCNTs to epoxy and vinyl chloride/vinyl acetate copolymer (VYHH) coatings increased their charge transfer resistance in comparison with the neat coatings. This is an indication of the enhanced corrosion protection of the nano-coatings. In addition, mechanical strength tests, both before and after immersion in 5% NaCl solution, showed that thin films from both epoxy and VYHH resins containing MWCNTs had improved strength, an indication of an improvement in the coatings' cohesive properties.  相似文献   

3.
MgO coating is formed on magnesium alloy by anodic electrodeposition in 6 M KOH solution, whereas Mg(OH)2 coating is produced by anodization in 10 M KOH solution, which could be successively converted to MgO by calcination in air at 450 °C. The evolution of morphology, structure and composition of anodic film obtained on Mg alloy is investigated using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). Potentiodynamic polarization measurements show that the as-grown MgO protective coatings are very effective in improving the corrosion resistance of magnesium alloy compared to bare metallic magnesium.  相似文献   

4.
Silica coatings have been applied on the surface of ZE41 magnesium alloy following the organic sol-gel route and the dip-coating technique. Three different concentrations of sol solution and two densification temperatures of the coating (400 °C and 500 °C) were used to optimize the compaction of the coatings and as a result reach the corrosion protection of the metallic substrate tests in 3.5 wt.% NaCl aqueous solution. Crack-free coatings with thickness in the 2-3 μm were obtained on the ZE41 magnesium alloy. The combination of high alkoxide concentration in the sol-gel formulation, and the high sintering temperature (500 °C) leads to coating (D500) with the optimal physical barrier against the corrosion process. This coating was capable of resisting more than 7 days in contact with the aggressive electrolyte suffering minor corrosion degradation. A corrosion mechanism for each of the tested specimens has been proposed.  相似文献   

5.
Two epoxy resins, EP and EPA, with similar backbone structure but different water affinity, was obtained by curing o-cresol novolac epoxy resin with phenol novolac resin and phenol novolac acetate resin, respectively. By using these two resins, the effect of the polymeric structure on the corrosion protection of the coatings was studied. The free volume in EPA is larger than that in EP as demonstrated by room-temperature density measurement and positron annihilation, while water sorption of EPA is only half of that of EP. Therefore, water affinity of the resin is more important in determining water sorption of the resin than free volume. The cross-sectional area of water passage at coating/metal interface (Aw) was estimated using the electrochemical impedance spectroscopy and compared with that in the resin matrix (Acs). It was found that, for EPA, Aw is much less than Acs, which suggests a significant narrowing of water passage at the coating/metal interface. This narrowing of water passage at coating/metal interface due to the formation of a hydrophobic layer can greatly improve the corrosion protection of the coating.  相似文献   

6.
This work is aimed at developing and investigating silane based organic-inorganic hybrid coatings possessing unique properties, which can be used to improve the performance of steel structures subjected to marine corrosion. These silane based sol-gel coatings were prepared by dip coating planar samples of mild steel in solution of an organically modified silica sol made from hydrolysis and polycondensation of tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) in acid catalysis condition. Crack-free coatings were obtained on curing at 200 °C. On increasing the curing temperature to 400 °C, however, cracks developed in the plain organic-inorganic hybrid coatings. This observation was consistent with the visual observations where appearance of the coated specimen changed from colourless metallic to brownish grey on curing from 200 °C to 400 °C temperature. The coatings were further modified using SiO2 nanoparticles and cerium. The effect of change in the - temperature as well as - composition on the microstructural properties of the coatings was determined using optical microscopy, scanning electron microscopy and atom force microscopy. Additionally, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR/FTIR) was carried out to show the formation of the Si-O-Si structural backbone of the hybrid material with the organic CH3 group incorporated into the silica network. The corrosion protection performance of these coatings was examined using potentiodynamic polarisation technique and electrochemical impedance spectroscopy in aerated 3.5 wt.% NaCl solution. The polarization curves and corrosion resistance as measured by the bode plots suggested that the plain hybrid coatings offer good protection against corrosion. However, the SiO2 and cerium modified nano hybrid coatings exhibited superior performance to that displayed by plain hybrid coatings.  相似文献   

7.
Composition modulated multilayer alloy (CMMA) coating of Zn-Fe was developed galvanostatically on mild steel through single bath technique (SBT), using thiamine hydrochloride as additive. Electrodeposits with different coating matrices were developed, using square current pulses. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods were used to assess the corrosion performance of the coatings. The cyclic cathode current densities (CCCDs) and number of layers were optimized, for highest corrosion resistance. Experimental results showed that CMMA Zn-Fe coating, developed at 2.0-4.0 A/dm2, having 300 layers is ∼30 times higher corrosion resistant than corresponding monolithic alloy of same thickness. The corrosion resistance increased with number of layers up to a certain number of layers; and then decreased. The better corrosion resistance was attributed to the dielectric barrier at the interface, evidenced by dielectric spectroscopy. The formation of multilayer and corrosion mechanism was analyzed using scanning electron microscopy (SEM).  相似文献   

8.
Plasma nitriding is a promising posttreatment technique to create a nitride layer on electroplated chromium coatings for improving their corrosion resistance. In the present study, the effects of plasma nitriding on the corrosion properties of electroplated chromium/C45 mild steel were investigated using electrochemical characterization. The chromium plated samples were nitrided using a pulsed direct current glow discharge in an NH3 atmosphere. The polarization curve measurement results showed that the plasma nitrided samples exhibited more positive corrosion potentials (Ecorr), smaller corrosion currents (Icorr), and evident passivation when compared with unnitrided chromium plating/substrate system. The high value of Ecorr and low value of Icorr imply an improvement of the corrosion resistance of the coating/substrate system after plasma nitriding.  相似文献   

9.
Hot rolled steel (HRS) has long been a major product to the motor industry for bodywork, as galvanised steel (zinc coatings), and it is widely used in building and as tinplate (including tin and chrome oxide coatings) for food, etc. can-making. Among more specialist uses its moderate production costs makes it suitable for the manufacturing process. In this study, newly developed corrosion protection enhanced silicone based powder coating was evaluated on hot rolled steel (HRS). The powder coating in this study was developed to withstand high temperatures up to 550°C without any degradation. In the study silicone resin was incorporated with fillers, corrosion inhibitors and fibres at various compositions to achieve maximum heat resistance and improved corrosion resistance. Protective behaviours of the differently formulated powder paints were investigated before and after heat exposure. The developed paint system was evaluated using various test methods such as heat resistance, salt spray, Electrochemical Impedance Spectroscopy (EIS), adhesion test and microstructure study using SEM. The evaluation of test results revealed that powder coating combining zinc dust particles and mineral fibres have better performance due to better corrosion and adhesion stability in the corrosive environment before and after heat exposure up to 550°C.  相似文献   

10.
Abstract

A hybrid silica/epoxy nanocomposite film containing boehmite nanoparticles has been developed in this work through the sol–gel method to protect AA2024 alloy from corrosion. The hybrid sols were prepared by copolymerisation of 3-glycidoxypropyltrimethoxysilane, tetraethylorthosilicate and aluminium isopropoxide. The films were prepared by dip coating technique. The morphology and the structure of the hybrid sol–gel films were studied by scanning electron microscopy and atomic force microscopy. The corrosion protection properties of the films were investigated by potentiodynamic scanning and electrochemical impedance spectroscopy. The results indicate that the presence of the boehmite nanoparticles in hybrid structure of the silica/epoxy films, highly improved the corrosion protection performance of the coating system.  相似文献   

11.
Results on the deposition and characterization of TiOxNy/ZrOxNy multilayers, with bilayer periods of 20 and 400 nm, are presented. The coatings were deposited on TiNiNb alloy substrates by the pulsed magnetron sputtering method. The elemental composition, hardness, adhesion and corrosion resistance of the coatings were analyzed.As resulted from the XPS analysis, the individual layers consisted of a mixture of titanium or zirconium oxynitrides and corresponding oxides. X-ray analysis revealed that the coatings were amorphous. Only slight differences between the microhardness and adhesion values of the coatings with small and large bilayer period Λ were found. The experiments also showed that the multilayered coatings improved the corrosion resistance of the uncoated alloy and reduced the amount of ion release in artificial body fluids.  相似文献   

12.
Novel LDH-based nanocontainers of corrosion inhibitor are developed in the present work. The reservoirs are composed by nanostructured layered double Mg/Al and Zn/Al hydroxides with divanadate anions located in the interlayer regions. The nanocrystalline LDHs (layered double hydroxides) are able to release vanadate ions in a controllable way.XRD, EDS and SEM methods were used in this work to study morphological and structural properties of the synthesized LDH powders. Corrosion protection effect of the LDH powders directly added to corrosive electrolyte or to commercial coatings used for aeronautical application has been studied by electrochemical impedance spectroscopy and standard accelerated corrosion tests. Aluminium alloy 2024 was used here as substrate.The results demonstrate that both of the LDH pigments being added to corrosive media confer corrosion inhibition effect, especially Zn/Al based nanocontainers obtained by the anion-exchange approach. The coatings doped with Zn/Al LDH-nanocontainers provide well-defined self-healing effect and confer corrosion protection properties superior than currently used environmentally unfriendly chromate-based systems.  相似文献   

13.
To improve the corrosion resistance of copper, poly(1-vinylimidazole) (P(VIDz)) coatings were tethered on copper via surface-initiated free radical graft polymerization of 1-vinylimidazole. An epoxide-containing trimethoxysilane was first coupled to the hydroxyl-enriched substrates for the introduction of polymerization initiator, 4,4′-azobis-(4-cyanpentanoic acid) (ACP). P(VIDz) brushes were subsequently grafted from the polymerization initiator-immobilized surfaces. The electrochemical behavior and anti-corrosion properties of the functionalized copper coupons in 0.5 M HCl solution were investigated by the measurement of open-circuit potential (OCP) temporal variation, Tafel polarization curves, and electrochemical impedance spectroscopy (EIS). As physical barriers to active species with the chelation of nitrogen and/or the π-conjugation of the ring to copper ions, the P(VIDz) coatings exhibited a high corrosion inhibition efficiency. The stability and integrity of the grafted polymers on copper substrates was evaluated by scanning electron microscopy (SEM) and cyclic voltammetry (CV).  相似文献   

14.
TiO2 coatings on AA6082 aluminium alloy were obtained at low temperature (80 and 100°C) by the sol–gel dip-coating technique starting from titanium tetra-isopropoxide solution in ethyl alcohol. The preparation was carried out in the presence of acetic acid with both functions of catalyst and chelating agent. The curing temperatures used for these coatings are between 80 and 100°C, low enough to make such coatings suitable to incorporate additives such as organic inhibitors or polymeric nanoparticles. The coated samples were characterised by scanning electron microscopy and energy-dispersive spectroscopy, atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy (EIS). Compact coatings with a thickness of 500?nm, consisting of amorphous and nearly stoichiometric titanium dioxide, were obtained. EIS results revealed an effective corrosion protection of the substrate for more than 120?h of immersion in 3.5?wt-% NaCl aqueous solution.  相似文献   

15.
Polyaniline, polypyrrole and their composites have been deposited on mild steel electrode from aqueous oxalic acid solution by using cyclic voltammetry (CV) technique. The resulting coatings were characterized by scanning electron microscopy and EDX analysis. The protective performance against corrosion of these coatings is evaluated by using electrochemical impedance spectroscopy (EIS) technique in corrosive solution (3.5% NaCl). Impedance data indicates a noticeable enhancement of protection against corrosion processes. Also, comparison of polyaniline‐phosphate and polypyrrole‐phosphate coatings indicates better corrosion protection with polyaniline‐phosphate coatings.  相似文献   

16.
Cathodic protection models for pipeline and other metallic structures developed to address the presence of coating flaws or holidays do not account explicitly for the presence of a delaminated region surrounding a holiday. The potential drop in the delaminated region was obtained by solving the coupled, non-linear, partial differential, governing equations that describe transport and electrochemical reactions within the delaminated region. The results were used to develop an analytic expression for the potential drop across the delaminated region as a function of delaminated region length and the resistivity of the bulk environment exterior to the holiday. Expressions developed using this approach can be utilized by existing cathodic protection models to deliver improved potential distributions along protected metallic surfaces. The simulations were used to test the commonly employed assumption that transport by diffusion can be neglected in the delaminated region. The influence of diffusion on current was shown to be significant.  相似文献   

17.
In this study, polyoxadiazole-based coatings were molecularly designed by attaching two different functional groups, i.e., diphenyl-ether and diphenyl-hexafluoropropane, in the main polymer chain for the purpose of low water permeability and eventually for high corrosion protection of AM50 magnesium alloy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) were used to evaluate the coating performance of the two polymers. Electrochemical experiments showed that POD-6FP (poly(4,4′-diphenyl-hexafluoropropane-1,3,4-oxadiazole)) coated alloy exhibited 3-4 orders of magnitude higher corrosion resistance as compared to the POD-DPE (poly (4,4′-diphenyl-ether-1,3,4-oxadiazole)) coated alloy. The high coating performance of the POD-6FP polymer can be attributed to the hydrophobic group attached to the polyoxadiazole chain.  相似文献   

18.
The formation of thin protective layers at metals, which could be successfully used for corrosion control, has long been the focus of attention for physical chemists. Those layers are formed either during the adsorption of corrosion inhibitors (CTs) or in reactions of the cations of the metal to be protected with some components of the medium. The latter case involves not only nanosized layers formed by CIs but also thick conversion (oxide, phosphate, etc.) coatings. Let us restrict our consideration to conversion coatings (CCs) with a thickness δ of ≤5 μm. Apparently, it is methods designed to form thin and ultrathin protective layers that will be in the best demand by the technologies of the XXI century. We will consider only a few important problems that physical chemists face with when studying the possibilities of the protection of metals from corrosion. Original Russian Text ? Yu.I. Kuznetsov, 2006, published in Zashchita Metallov, 2006, Vol. 42, No. 1, pp. 3–12. This paper is based on the plenary lecture delivered at the International Conference “Physicochemical Foundations of the Up-To-Date Technologies of the XXI Century” dedicated to the 60th anniversary of the Institute of Physical Chemistry, Russian Academy of Sciences (Moscow, 29.05.2005–4.06.2005).  相似文献   

19.
Electrochemical synthesis of very thin polyphenol (PPhe) film was achieved on polypyrrole coated mild steel electrode (MS/PPy) and a multilayer coating was obtained, cyclic voltammetry technique was used for the synthesis. The corrosion performance of this multilayer coating and single PPy coating were investigated in 0.05 M H2SO4 solution by using electrochemical impedance spectroscopy (EIS), anodic polarization curves and open circuit potential (Eocp)-time curves were used. It was found that the multilayer coating could provide much better protection than the single PPy coating for corrosion of MS for much longer periods and an efficiency of 98.3% was determined for this coating after 340 h exposure time in corrosive medium. It is proposed that the very thin PPhe film coated on top of PPy coating lowered the porosity and improved the barrier effect of the coating significantly.  相似文献   

20.
Many methods of corrosion protection rely on toxic chemicals such as hexavalent chromium (Cr6+), which is the species responsible for protection in conversion coatings, anodizing baths and as a pigment in polymer coatings. Despite many attemps to replace Cr6+ and other harzardous chemicals in corrosion protection, very little progress has been made. Passive layers containing Ce and Mo have already been formed on materials such as A17075 and A12024, and their corrosion behaviour has been shown to improve by inhibition of both anodic and cathodic reaction. In this work the results of applying these coatings to SS304 and 316 will be presented. The layers were studied by electrochemical impedance spectroscopy (EIS), X-ray photo-electron spectroscopy (XPS), and the corrosion behaviour was followed by EIS and d.c. current methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号