首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suspension plasma spraying (SPS) is a fairly recent technology that is able to process sub-micrometer-sized or nanometer-sized feedstock particles and permits the deposition of coatings thinner (from 20 to 100 μm) than those resulting from conventional atmospheric plasma spraying (APS). SPS consists of mechanically injecting within the plasma flow a liquid suspension of particles of average diameter varying between 0.02 and 1 μm. Due to the large volume fraction of the internal interfaces and reduced size of stacking defects, thick nanometer- or sub-micrometer-sized coatings exhibit better properties than conventional micrometer-sized ones (e.g., higher coefficients of thermal expansion, lower thermal diffusivity, higher hardness and toughness, better wear resistance, among other coating characteristics and functional properties). They could hence offer pertinent solutions to numerous emerging applications, particularly for energy production, energy saving, etc. Coatings structured at the nanometer scale exhibit nanometer-sized voids. Depending upon the selection of operating parameters, among which plasma power parameters (operating mode, enthalpy, spray distance, etc.), suspension properties (particle size distribution, powder mass percentage, viscosity, etc.), and substrate characteristics (topology, temperature, etc.), different coating architectures can be manufactured, from dense to porous layers, from connected to non-connected network. Nevertheless, the discrimination of porosity in different classes of criteria such as size, shape, orientation, specific surface area, etc., is essential to describe the coating architecture. Moreover, the primary steps of the coating manufacturing process affect significantly the coating porous architecture. These steps need to be further understood. Different types of imaging experiments were performed to understand, describe and quantify the pore level of thick finely structured ceramics coatings.  相似文献   

2.
Many substrates do not sustain the conventional glazing process (i.e., vitreous glazing) due to the relatively high temperature required by this treatment (i.e., up to 1400 °C in some cases) to fuse glazes after their application on the surface to be covered. Flame spraying could appear as a solution to circumvent this limitation and to avoid thermal decomposition of substrates. This contribution describes some structural attributes of glaze coatings manufactured by flame spraying. It also discusses the influence of the feedstock powder morphology and some of its physical properties on coating characteristics. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

3.
Suspension plasma spraying (SPS) is an alternative to conventional atmospheric plasma spraying (APS) aiming at manufacturing thinner layers (i.e., 10-100 μm) due to the specific size of the feedstock particles, from a few tens of nanometers to a few micrometers. The staking of lamellae and particles, which present a diameter ranging from 0.1 to 2.0 μm and an average thickness from 20 to 300 nm, permits to manufacture finely structured layers. Moreover, it appears as a versatile process able to manufacture different coating architectures according to the operating parameters (suspension properties, injection configuration, plasma properties, spray distance, torch scan velocity, scanning step, etc.). However, the different parameters controlling the properties of the coating, and their interdependences, are not yet fully identified. Thus, the aim of this paper is, on the one hand, to better understand the influence of operating parameters on the coating manufacturing mechanisms (in particular, the plasma gas mixture effect) and, on the other hand, to produce Al2O3-ZrO2 finely structured layers with large varieties of architectures. For this purpose, a simple theoretical model was used to describe the plasma torch operating conditions at the nozzle exit, based on experimental data (mass enthalpy, arc current intensity, thermophysical properties of plasma forming gases, etc.) and the influences of the spray parameters were determined by mean of the study of sizes and shapes of spray beads. The results enabled then to reach a better understanding of involved phenomena and their interactions on the final coating architectures permitting to manufacture several types of microstructures.  相似文献   

4.
Deposition of metallic coatings on elastomeric polymers is a challenging task due to the heat sensitivity and soft nature of these materials and the high temperatures in thermal spraying processes. In this study, a flame spraying process was employed to deposit conductive coatings of aluminum-12silicon on polyurethane elastomers. The effect of process parameters, i.e., stand-off distance and air added to the flame spray torch, on temperature distribution and corresponding effects on coating characteristics, including electrical resistivity, were investigated. An analytical model based on a Green’s function approach was employed to determine the temperature distribution within the substrate. It was found that the coating porosity and electrical resistance decreased by increasing the pressure of the air injected into the flame spray torch during deposition. The latter also allowed for a reduction of the stand-off distance of the flame spray torch. Dynamic mechanical analysis was performed to investigate the effect of the increase in temperature within the substrate on its dynamic mechanical properties. It was found that the spraying process did not significantly change the storage modulus of the polyurethane substrate material.  相似文献   

5.
In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.  相似文献   

6.
Due to the large volume fraction of the internal interfaces and reduced size of stacking defects, thick (from 20 to 100 µm) nano- or sub-micron structured coatings exhibit better properties than conventional micron structured ones (e.g. higher coefficients of thermal expansion, lower thermal diffusivity, higher hardness and toughness, better wear resistance, among other coating characteristics and functional properties). They could hence offer pertinent solutions to numerous emerging applications, in particular for energy production, energy saving, diffusion and environmental barriers, etc.Suspension plasma spraying (SPS) permits to manufacture such finely-structured layers and consists in mechanically injecting within the plasma flow a liquid suspension of sub-micrometric-sized or nano-sized particles through an injector of diameter of the order of one hundred micrometers. Upon penetration within the DC plasma jet, two phenomena occur sequentially: droplet fragmentation and then solvent evaporation. Particles are then processed by the plasma flow (heat and momentum transfers) prior to their impact, flattening and solidification upon the surface to be covered.Compared to plasma spraying of micrometer-sized particles (APS), SPS exhibit several major differences : i) a more pronounced sensitivity to electric are root fluctuation requiring to operate the spray gun in a relatively stable mode (take over) unless to process inhomogeneously the suspension which would results in heterogeneous coating structure; ii) a shorter spray distance (since small particles decelerate faster than bigger ones) leading to higher thermal flux transmitted from the plasma flow to the substrate (5 to 10 times higher than conventional plasma spraying); iii) an emphasized thermophoresis effect; iv) a typical cohesive structure made of the stacking of granular and flattened particles with low density of stacking defects.This paper aims at presenting recent developments carried-out on this process in terms of process optimization and coating manufacturing mechanisms.  相似文献   

7.
Suspension plasma spraying (SPS) is able to process sub-micrometric-sized feedstock particles and permits the deposition of layers thinner (from 5 to 50 μm) than those resulting from conventional atmospheric plasma spraying (APS). SPS consists in mechanically injecting within the plasma flow a liquid suspension of particles of average diameter varying between 0.02 and 1 μm, average values. Upon penetration within the DC plasma jet, two phenomena occur sequentially: droplet fragmentation and evaporation. Particles are then processed by the plasma flow prior their impact, spreading and solidification upon the surface to be covered. Depending upon the selection of operating parameters, among which plasma power parameters (operating mode, enthalpy, spray distance, etc.), suspension properties (particle size distribution, powder mass percentage, viscosity, etc.), and substrate characteristics (topology, temperature, etc.), different coating architectures can be manufactured, from dense to porous layers. Nevertheless, the coupling between the parameters controlling the coating microstructure and properties are not yet fully identified. The aim of this study is to further understand the influence of parameters controlling the manufacturing mechanisms of SPS alumina coatings, particularly the spray beads influence.  相似文献   

8.
Thermal spraying with the HVOF technology is a well known approach to dense metallic, ceramic and cermets coatings with good mechanical properties. Any attempt for improving HVOF coating properties requires a fundamental understanding of the mechanisms that occur during HVOF spraying. Thermal spray processes are not only optimized by empirical testing and by correlation analysis between process parameters and coating properties but also with numerical approaches. Recent attempts to understand the momentum and heat transfer mechanisms between flame and particles, and thus improve the control of the thermokinetic deposition process by analysis of fundamental thermophysical and fluid mechanical processes, have led to computational modeling of the spraying process and verification of simulation results by in-flight particle analysis.This paper focuses on modeling (tracking) of the particle properties during HVOF spraying using alumina powder. The particle properties are sensitive to a large number of process parameters (e.g., gas temperature, gas expansion velocity, pressure, spraying distance, spray powder particle diameter, nozzle geometry, etc.). Variation of the operating parameters of the HVOF process (gas flow rates, stoichiometric oxy/fuel ratio, nozzle design, etc.) is performed during modeling and simulation. The SprayWatch® system for particle in-flight measurement is used for verification of the numerical analysis result.  相似文献   

9.
It is widely recognized by the scientific community that thermal spray coatings exhibit anisotropic behaviour of mechanical properties, e.g., the elastic modulus values of the coating in-plane (i.e., parallel to the substrate surface) or through-thickness (i.e., perpendicular to the substrate surface) will tend to be significantly different due to their anisotropic microstructures. This work shows that thermally sprayed ceramic coatings may exhibit isotropic mechanical behaviour similar to that of bulk materials even when exhibiting the typical anisotropic coating microstructure. Elastic modulus values on the in-plane and through-thickness directions were measured via Knoop indention and laser-ultrasonic techniques on a coating produced via flame spray (FS) using a nanostructured titania (TiO2) powder. No significant differences were found between the coating directions. In addition, four major cracks with similar lengths were observed originating near or at the corners of Vickers indentation impressions on the coating cross-section (i.e., a typical characteristic of bulk ceramics), instead of two major cracks propagating parallel to the substrate surface, which is normally the case for these types of coatings. It was observed by scanning electron microscopy (SEM) that coatings tended to exhibit an isotropic behaviour when the average length of microcracks within the coating structure oriented perpendicular to the substrate surface was about twice that of the microcracks aligned parallel to the substrate surface. Modelling, based on scalar crack densities of horizontal and vertical cracks, was also used to estimate when thermal spray coatings tend to exhibit isotropic behaviour.  相似文献   

10.
Latest Developments in Suspension and Liquid Precursor Thermal Spraying   总被引:3,自引:0,他引:3  
The interest to manufacture onto large surfaces thick (i.e., 10-20 μm, average thickness) finely structured or nanostructured layers is increasingly growing since the past 10 years. This explains the interest for suspension thermal spraying (STS) and solution precursor thermal spraying (SPTS), both allowing manufacturing finely structured layers of thicknesses varying between a few micrometers up to a few hundreds of micrometers. STS aims at processing a suspension of sub-micrometer-sized or even nanometer-sized solid particles dispersed in a liquid phase. The liquid phase permits the injection of particles in the thermal flow (i.e., due to their size, a carrier gas cannot play this role). SPTS aims at processing a solution of precursors under the same conditions. Upon evaporation of the liquid phase, the precursor concentration increases until precipitation, pyrolysis, and melting of small droplets occur. Compared to conventional thermal spray routes, STS and SPTS are by far more complex because fragmentation and vaporization of the liquid control the coating build-up mechanisms. Numerous studies are still necessary to reach a better understanding of the involved phenomena and to further develop the technology, among which are injection systems, suspension and solution optimizations, spray kinematics, etc. This review presents some recent developments and our present knowledge in this field together with the available tools implemented to characterize the plasma-liquid interaction and the coating formation.  相似文献   

11.
以超音速火焰喷涂、大功率等离子喷涂等为代表的先进热喷涂技术,已成为冶金行业关键装备及部件在严苛服役环境下实现高温耐磨、耐腐蚀、抗结瘤、隔热等多功能化的关键技术.概述了不同热喷涂技术的基本原理及涂层特性,进而详细论述热喷涂技术在服役于严苛环境中的冶金关键设备(如连铸结晶器铜板、热镀锌铝锅组件及高温炉辊等)上的研究现状及应...  相似文献   

12.
In the process of cold spray applications, robot kinematic parameters represent significant influences on the coating quality. Those parameters include: spray distance, spray angle, gun relative velocity to substrate, scanning step, and cycle numbers. The combined effects which are caused by their interactions determine the coating thickness. The increasing requirements of coating productivity lead to the objectivity of analyzing the effect of robot kinematic parameters. So it becomes necessary to optimize the robot trajectory for spraying process in order to obtain a desired coating thickness. This study aims at investigating the relationship between the coating profile and the spray distance, scanning step, and introducing the basic principle of a software toolkit named thermal spray toolkit (TST) developed in our laboratory to generate the optimized robot trajectories in spray processes including thermal spray and cold spray. Experiments have been carried out to check the reliability of the simulated coating profile and the calculated coating thickness by TST.  相似文献   

13.
Suspension plasma spray (SPS) is a novel process for producing nano-structured coatings with metastable phases using significantly smaller particles as compared to conventional thermal spraying. Considering the complexity of the system there is an extensive need to better understand the relationship between plasma spray conditions and resulting coating microstructure and defects. In this study, an alumina/8 wt.% yttria-stabilized zirconia was deposited by axial injection SPS process. The effects of principal deposition parameters on the microstructural features are evaluated using the Taguchi design of experiment. The microstructural features include microcracks, porosities, and deposition rate. To better understand the role of the spray parameters, in-flight particle characteristics, i.e., temperature and velocity were also measured. The role of the porosity in this multicomponent structure is studied as well. The results indicate that thermal diffusivity of the coatings, an important property for potential thermal barrier applications, is barely affected by the changes in porosity content.  相似文献   

14.
Oxidation or decomposition of thermally sprayed coatings during deposition may noticably impair the coating features and characteristics, i.e. the surface integrity of coated components, including coating porosity, phase, microhardness, elastic modulus and toughness, etc., having a profound influence on the final performance of components. Further degradations along with enhanced oxidation of the coatings were observed for an off-angle spraying scheme in industrial practice, where inconsistent results were previously reported for spray angle-dependent degradation of various thermal spray coatings, with the mechanism not being fully understood with the less controlled surface integrity. An improved off-angle HVOF thermal spray has been developed for cemented carbide coatings, using pretreated WC-Ni feedstock powders covered with a nanoscale capsulizing nickel layer. A comprehensive study on the formation of multiple surface integrity parameters and the correlative interactions between them is thus facilitated with controllable surface integrity generation using the capsulized powders. Decarburization is mainly attributed to the exposure of pristine WC grains causing enhanced porosity in inter-splats regions, and then microhardness depends mainly on porosity and partly on phase composition, while the elastic modulus depends on intra-splats cohesion and the indentation fracture toughness on inter-splats cohesion, respectively. Abrasive wear from mild to severe regime transition could be interpreted by the inter-splats and intra-splats cohesion correlation. It has been demonstrated by the improved off-angle thermal spray that a manufacturing process could be designed and optimized on the identified unique correlations between the processes, surface integrity and the final performance.  相似文献   

15.
WC-10Co-4Cr cermet coatings were deposited on the substrate of AISI 1045 steel by using high-velocity oxygen-fuel (HVOF) thermal spraying process. The Taguchi method including the signal-to-noise (S/N) ratio and the analysis of variance (ANOVA) was employed to optimize the porosity and, in turn, the corrosion resistance of the coatings. The spray parameters evaluated in this study were spray distance, oxygen flow, and kerosene flow. The results indicated that the important sequence of spray parameters on the porosity of the coatings was spray distance > oxygen flow > kerosene flow, and the spray distance was the only significant factor. The optimum spraying condition was 300 mm for the spray distance, 1900 scfh for the oxygen flow, and 6.0 gph for the kerosene flow. The results showed the significant influence of the microstructure on the corrosion resistance of the coatings. Potentiodynamic polarization and electrochemical impendence spectroscopy (EIS) results showed that the WC-10Co-4Cr cermet coating obtained by the optimum spraying condition with the lowest porosity exhibits the best corrosion resistance and seems to be an alternative to hard chromium coating.  相似文献   

16.
17.
Thermal spray techniques can fulfill numerous industrial applications. Coatings are thus applied to resist wear and corrosion or to modify the surface characteristics of the substrate (e.g., thermal conductivity/thermal insulation). However, many of these applications remain inhibited by some deposit characteristics, such as a limited coating adhesion or pores or by industrial costs because several nonsynchronized and sequential steps (that is, degreasing, sand blasting, and spraying) are needed to manufacture a deposit. The PROTAL process was designed to reduce the aforementioned difficulties by implementing simultaneously a Q-switched laser and a thermal spray torch. The laser irradiation is primarily aimed to eliminate the contamination films and oxide layers, to generate a surface state enhancing the deposit adhesion, and to limit the contamination of the deposited layers by condensed vapors. From PROTAL arises the possibility to reduce, indeed suppress, the preliminary steps of degreasing and grit blasting. In this study, the benefits of the PROTAL process were investigated, comparing adhesion of different atmospheric plasma spray coatings (e.g., metallic and ceramic coatings) on an aluminum-base substrate. Substrates were coated rough from the machine shop, for example, manipulated barehanded and without any prior surface preparation. Results obtained this way were compared with those obtained using a classical procedure; that is, degreasing and grit blasting prior to the coating deposition.  相似文献   

18.
Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.  相似文献   

19.
The limited deformation of hard cermet particles and impacted coating makes it difficult for conventional thermal spray powders to continuously build up on impact in cold spraying. In this study, three nanostructured WC-12Co powders with different porous structure and apparent hardness were employed to deposit WC-Co coatings on stainless steel substrate by cold spraying. The deposition characteristics of three powders of porosity from 44 to 5% were investigated. It was found that WC-Co coating is easily built-up using porous powders with WC particles bonded loosely and a low hardness. The microhardness of WC-12Co coatings varied from 400 to 1790 Hv with powders and spray conditions, which depends on the densification effects by impacting particles. With porous WC-Co powders, the fracture of particles on impact may occur and low deposition efficiency during cold spraying. The successful building up of coating at high deposition efficiency depends on the design of powder porous structure.  相似文献   

20.
Atmospheric plasma spraying of duplex and graded ZrO2 (8% Y2O3) thermal barrier coatings (TBCs) on Inconel 617 substrate with a NiCrAlY bond coat is described in terms of a deposition process of con-trolled coating structure. Special attention is devoted to the dominant spray parameters and the injector configuration for powder feeding, which play a fundamental role in graded coating deposition with con-trolled formation of a graded metal-ceramic (GMC) intermediate zone. The results of the graded coating spraying allow: (a) suppression of step-interface effects, (b) suppression of large differences (misfit) be-tween physical and mechanical constants of the coating and those of the substrate material, and (c) favor-able intergrowth of crystallites for a microstructurally integrated structure. Sprayed TBCs were investigated and compared with regard to their thermal cycling, oxidation behavior, and mechanical properties. The influence of crystal anisotropy changes on the resulting coating structure and properties is shown. On the basis of finite element (FE) calculations, the stress distribution within thermally cycled coating systems was analyzed. It is confirmed that the graded coating structure relaxes considerably the stresses resulting from the internal constraint due to thermal expansion difference between both metallic and ce-ramic materials. This stress distribution also decreases the gradient of elastic deformation and/or resid-ual stresses between the metal bond coat and top ceramic coating, and hence leads to a better thermal cycling behavior of the graded TBC systems. However, this advantage is not practical in every case, since the rapid oxidation of the metallic lamellae causes the ceramic phase in the GMC zone to undergo tensile stresses within a short thermal exposure time. The lifetime of duplex TBC systems that are under steady-state thermal load conditions is much higher than that of graded ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号