首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在基电解液中加入氮化硅纳米颗粒,对TC4钛合金进行微弧氧化(MAO)处理,研究了Si3N4浓度对微弧氧化层表面形貌、耐蚀性和耐磨性的影响。添加Si3N4的MAO层呈现多孔结构,当Si3N4浓度为1 g/L时,涂层厚度最大,且经过7 d的酸腐蚀试验,该涂层的耐蚀性良好,腐蚀速率最低,约为0.057 mg·cm-2·d-1。随着Si3N4的加入,MAO涂层的抗菌性能先升高后降低。当Si3N4的添加量为1 g/L时,该MAO层的抗菌性能最好。Si3N4的加入能明显提高涂层在模拟海水中的耐磨性。当Si3N4的添加量为3和4 g/L时,所得涂层的摩擦系数低且稳定,且添加3 g/L Si3N4制备来的MAO涂层表现出优异的耐磨性。  相似文献   

2.
Nanocomposite coatings of CrN/Si3N4 and CrAlN/Si3N4 with varying silicon contents were synthesized using a reactive direct current (DC) unbalanced magnetron sputtering system. The Cr and CrAl targets were sputtered using a DC power supply and the Si target was sputtered using an asymmetric bipolar-pulsed DC power supply, in Ar + N2 plasma. The coatings were approximately 1.5 μm thick and were characterized using X-ray diffraction (XRD), nanoindentation, X-ray photoelectron spectroscopy and atomic force microscopy. Both the CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings exhibited cubic B1 NaCl structure in the XRD data, at low silicon contents (< 9 at.%). A maximum hardness and elastic modulus of 29 and 305 GPa, respectively were obtained from the nanoindentation data for CrN/Si3N4 nanocomposite coatings, at a silicon content of 7.5 at.%. (cf., 24 and 285 GPa, respectively for CrN). The hardness and elastic modulus decreased significantly with further increase in silicon content. CrAlN/Si3N4 nanocomposite coatings exhibited a hardness and elastic modulus of 32 and 305 GPa, respectively at a silicon content of 7.5 at.% (cf., 31 and 298 GPa, respectively for CrAlN). The thermal stability of the coatings was studied by heating the coatings in air for 30 min in the temperature range of 400-900 °C. The microstructural changes as a result of heating were studied using micro-Raman spectroscopy. The Raman data of the heat-treated coatings in air indicated that CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings, with a silicon content of approximately 7.5 at.% were thermally stable up to 700 and 900 °C, respectively.  相似文献   

3.
a-CNx/TiN multilayer films were deposited onto high-speed steel substrates by pulsed laser ablation of graphite and Ti target alternately in nitrogen gas. The composition, morphology and microstructure of the films were characterized by energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The tribological properties of the films in humid air were investigated using a ball-on-disk tribometer. The multilayer films consist of crystalline TiN, metallic Ti and amorphous CNx (a-CNx). With an increase in thickness ratio of CNx to bilayer, the hardness of multilayer film decreases, friction coefficient decreases from 0.26 to 0.135, and wear rate increases. The film with thickness ratio of CNx to bilayer of 0.47 exhibits a maximum hardness of 30 GPa and excellent wear rate of 2.5 × 10− 7 mm3 N− 1 m− 1. The formation of tribo-layer was observed at contact area of Si3N4 ball. The film undergoes the combined wear mechanism of abrasion wear and adhesion wear.  相似文献   

4.
为了提高TC4合金的耐磨性能,采用激光热喷涂技术在其表面制备了Co30Cr8W1.6C3Ni1.4Si涂层。通过扫描电子显微镜(SEM)和X射线衍射(XRD)分析了涂层的形貌和物相,并通过摩擦磨损实验研究了涂层在PAO+2.5% MoDTC(质量分数)油中的磨损行为。结果表明,激光热喷涂的Co30Cr8W1.6C3Ni1.4Si涂层主要由Ti、WC1-x、CoO、Co2Ti4O和CoAl相组成,在涂层界面形成冶金结合。在激光功率为1000、1200和1400 W时所制备的涂层平均摩擦因数分别为0.151、0.120和0.171,其对应的磨损率分别为1.17×10-6、1.33×10-6和2.80×10-6 mm3?N-1?m-1,磨损机理为磨粒磨损,其枝晶尺寸对降磨起主要作用。  相似文献   

5.
To explore the effect of various atmosphere the tribological behaviors of the sintered polycrystalline diamond compacts (PDCs), the friction and wear behaviors of PDCs sliding against Si3N4 balls were evaluated by a ball-on-disk tribometer under nitrogen, argon, oxygen and air (10% relative humidity) environments, respectively. The energy dispersive X-ray spectrum (EDS), Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscope (AFM) were conducted to investigate the microstructure evolution of worn surface. The results demonstrated that the low friction appeared in argon and nitrogen environment. The formations of consecutive carbonaceous transfer films on wear scars contributed to decrease the friction during sliding process. The wear of PDCs and Si3N4 balls were serious in argon and nitrogen environment, but slight in oxygen and air conditions. There is a direct relationship between material removal and running-in period. The passivation effect of dangling bond under oxygen and air conditions can shorten the running in period thus weaken the wear.  相似文献   

6.
The phase relation, microstructure, Curie temperatures (TC), magnetic transition, and magnetocaloric effect of (Gd1−xErx)5Si1.7Ge2.3 (x = 0, 0.05, 0.1, 0.15, and 0.2) compounds prepared by arc-melting and then annealing at 1523 K (3 h) using purity Gd (99.9 wt.%) are investigated. The results of XRD patterns and SEM show that the main phases in those samples are mono-clinic Gd5Si2Ge2 type structure. With increase of Er content from x = 0 to 0.2, the values of magnetic transition temperatures (TC) decrease linearly from 228.7 K to 135.3 K. But the (Gd1−xErx)5Si1.7Ge2.3 compounds display large magnetic entropy near their transition temperatures in a magnetic field of 0-2 T. The maximum magnetic entropy change in (Gd1−xErx)5Si1.7Ge2.3 compounds are 24.56, 14.56, 16.84, 14.20, and 13.22 J/kg K−1 with x = 0, 0.05, 0.1, 0.15, and 0.2, respectively.  相似文献   

7.
Sliding wear tests against monolithic Si3N4 and austenitic stainless steel, respectively, were performed on Si3N4 ceramic with the addition of hBN solid lubricants. The friction coefficients and wear rates were measured. The wear surface features were examined by scanning electron microscopy (SEM) and laser scanning microscopy (LSM), and the chemical characterization of worn surface was made by Energy disperse spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Results showed that the friction coefficient and the wear rate decreased with the increase of hBN up to 20 vol% at high relative humidity (RH95%). When Si3N4-hBN ceramic composites sliding against stainless steel, with further increases in hBN content, the wear rate increased rapidly. The mechanism responsible were determined to be an in-situ formed tribo-chemical film composed of B-O and Si-O compounds between the pin-disc sliding couple. SEM observations showed that a black surface film is formed on the wear surface depending on the hBN content. The surface film associated with small friction coefficient of 0.03 and low wear rate with the magnitude of 10 6 mm3/Nm was formed by the releasing and smearing of the tribo-chemical reaction products of hBN and moisture on the wear surface when with 20 vol%hBN content. This tribo-chemical film acted as solid lubricant film between the sliding couple, and thus the couple entered to a state of boundary lubrication. Hence, the friction coefficient and the wear rate were significantly reduced. For Si3N4-hBN/stainless steel sliding pair, even at high relative humidity, no tribo-chemical film was observed on samples with 30 vol%hBN content, just because of a large degradation of mechanical properties of the composite with higher hBN content. At low relative humidity (RH25%), the wear mechanism for Si3N4-hBN sliding couple was mainly dominated by mechanical wear (abrasive or adhesive wear) due to the absence of tribo-chemical film on the wear surfaces, and higher friction coefficient and wear rate were obtained.  相似文献   

8.
Ni-P-TiN化学复合镀层具有比Ni-P镀层更高的硬度和耐磨性,但其表面粗糙度大,与对偶件之间的摩擦因数高,应用潜力受到限制。通过在化学镀液中添加不同用量的纳米WS_(2)颗粒和固定用量的TiN颗粒,在低碳钢表面制备Ni-P-TiN-WS_(2)复合镀层。采用X射线能谱仪(EDS)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)对镀层的化学成分(质量分数)、表面形貌及微观结构进行表征,并利用球盘式摩擦磨损试验机测试复合镀层的摩擦磨损性能。结果表明:纳米WS_(2)颗粒与纳米TiN颗粒的共沉积可使镀层表面更加致密、平整。随着镀液中纳米WS_(2)用量的增加,复合镀层的硬度先减小后增大,与氮化硅陶瓷球的摩擦因数则先升后降,磨损率显著下降,耐磨性增强。镀液中纳米WS_(2)粉末的用量为2.5 g/L时复合镀层的摩擦学性能最佳。纳米WS_(2)颗粒的加入及用量优化可显著改善复合镀层的综合性能,可为发展高耐磨低摩擦因数的先进涂层提供借鉴。  相似文献   

9.
TiAlSiN/Si3N4 multilayer coatings which have different separate layer thicknesses of TiAlSiN or Si3N4 were deposited onto glass sheets, single-crystal silicon wafers and polished WC-Co substrates by reactive magnetron co-sputtering. The morphology, crystalline structure and thickness of the as-prepared multilayer coatings were characterized by TEM, SEM, XRD and film thickness measuring instrument. The mechanical properties of the coatings were evaluated by a nanoindenter. The effects of monolayer thickness on the microstructure and properties of TiAlSiN/Si3N4 multilayer coatings were explored. The coatings showed the highest hardness when the thickness of Si3N4 and TiAlSiN monolayers was 0.33 nm and 5.8 nm, respectively. The oxidation characteristics of the coatings were studied at temperatures ranging from 700 °C to 900 °C for oxidation time up to 20 h in air. It was found that the coatings displayed good oxidation resistance.  相似文献   

10.
The sintered polycrystalline diamond compacts (PDCs) were annealed at 200 °C, 300 °C, 400 °C, 500 °C, 600 °C, 700 °C, and 800 °C under vacuum environment. The friction and wear behaviors of the annealed PDCs sliding against Si3N4 balls were evaluated by a ball-on-disc tribometer in ambient atmosphere. The compositions, microstructures and surface morphologies of PDC discs and wear scars on Si3N4 balls were characterized by energy dispersive spectroscopy (EDS), Raman spectroscopy, and scanning electron microscopy (SEM), respectively. The experimental results demonstrated that the steady friction coefficient decreased at the annealing temperature of 200 °C and increased with annealing temperature increasing. While, the wear rate of PDCs and Si3N4 balls increased at 200 °C, and sharply decreased from 300 to 800 °C. The surface morphologies and Raman spectra revealed that the variation law of friction coefficient curves at different annealing temperatures was attributed to carbonaceous transfer films formed on Si3N4 balls. The residual stress on PDC surface was reduced after the annealing treatment, thus fine diamond grains were easily extracted from PDC surface onto the contact area during the tribotest which led to the wear of PDC and abrasive wear for both counter parts. These results revealed that the friction and wear behaviors of PDC were significantly affected by the vacuum annealing temperature.  相似文献   

11.
Wear properties of CrN/NbN superlattice coating deposited on the WC-12Co substrate was investigated while using 100Cr6 steel, SiC and Al2O3 ball as counterbodies for friction pairs. The value of friction coefficient and wear rate was lowest at ~ 0.01 and 2.6 × 10 7 mm3/Nm, respectively, when coating slides against Al2O3 ball. In contrast, friction coefficient and wear rate were increased while sliding with steel and SiC ball. The deviation in friction coefficient was described by mechanical and chemical properties of these balls. Hardness of Al2O3 and SiC ball was comparable but significant deviation in friction coefficient was observed. That is related to oxidation resistance of these balls which is high for Al2O3 compared to SiC ball as evident by Raman analysis of the wear track. However, hardness and oxidation resistance were low for steel ball which shows oxidational wear mechanism.  相似文献   

12.
《Intermetallics》2006,14(7):848-852
Nickel aluminides coatings have been produced by self-propagating high-temperature synthesis using concentrated solar energy, with nickel composition of coatings ranging from 45 to 75 at.%. The dry sliding wear behaviour of coatings has been performed in a pin-on-disk tribometer. NiAl coatings (50 at.% Ni) have been tested against Al2O3 and WC–Co balls, while other coatings have been tested against Al2O3 balls. In all the coatings a three-body abrasion is produced by the particles detached from the coating surface and then oxidized, which remain between the ball and the coating. NiAl coatings exhibit the lowest wear coefficient while coatings with the highest Ni content have the highest wear coefficients. Wear coefficients show that NiAl coatings or coatings composed mainly of NiAl have a high wear resistance.  相似文献   

13.
Zirconium nitride was deposited by reactive unbalanced magnetron sputtering at different N2 partial pressures, on an AISI 316L stainless steel substrate. The mechanical properties of the coatings were evaluated by means of nanoindentation tests employing a Berkovich indenter and loads which varied between 120-9000 µN. The sliding wear behavior of the substrate-coating systems was studied under a normal load of 2 N using a ball-on-disc tribometer, with an AISI 52100 ball (6 mm diameter) as counterpart. It has been found that N2 partial pressure has a significant effect both on the hardness and corresponding Young's modulus of the coatings. As the N2 partial pressure increases from 1 × 10− 4 Torr to 10 × 10− 4 Torr, the hardness and Young's modulus of the coatings decrease from 26 to 20 GPa and 360 to 280 GPa, respectively. The nanoindentation tests revealed the presence of a third oxide layer (10 nm thick, approximately) on the surface of the coating. Scanning electron microscopy (SEM) analysis performed on the worn triboelements indicated that both abrasive and adhesive wear mechanisms could take place in addition to the substrate plastic deformation. The deposition conditions and coating mechanical integrity determine the predominant wear mechanism.  相似文献   

14.
Preparation of the Ti3Si1−xAlxC2 solid solution with x = 0.2-0.8 was investigated by self-propagating high-temperature synthesis (SHS) using TiC-, SiC-, and Al4C3-containing powder compacts. Due to the variation of reaction exothermicity with sample stoichiometry, the combustion temperature and reaction front velocity decreased with increasing Al content of Ti3Si1−xAlxC2 for the TiC- and Al4C3-added samples, but increased for the samples with SiC. In contrast to the formation of Ti3(Si,Al)C2 as the dominant phase for the TiC- and SiC-added samples, TiC was identified as the major constituent in the final products of samples adopting Al4C3. In addition, the evolution of Ti3(Si,Al)C2 was improved by increasing the Al content of the TiC- and SiC-added powder compacts, but deteriorated considerably upon the increase of Al4C3 in the Al4C3-containing sample.  相似文献   

15.
Titanium oxynitride coatings were deposited on various substrates by an original atmospheric pressure metal organic chemical vapor deposition (MOCVD) process using titanium tetra-iso-propoxide as titanium and oxygen precursors and hydrazine as a nitrogen source. The films composition was monitored by controlling the N2H4 mole fraction in the initial reactive gas phase. The variation of the N content in the films results in significant changes in morphological, structural and mechanical properties. When a large excess of the nitrogen source is used the resulting film contains ca 17  at % of nitrogen and forms dense and amorphous TiOxNy films. Growth rates of these amorphous TiO1.5N0.5 coatings as high as 14 μm/h were obtained under atmospheric pressure. The influence of the deposition conditions on the morphology, the structure, the composition and the growth rate of the films is presented. For the particular conditions leading to the growth of amorphous TiO1.5N0.5 coatings, first studies on the mechanical properties of samples grown on stainless steel have revealed a high hardness, a low friction coefficient, and a good wear resistance in unlubricated sliding experiments against alumina which make them very attractive as protective metallurgical coatings.  相似文献   

16.
Effect of MoSx content has been studied in TiN-MoSx composite coating deposited by closed-field unbalanced magnetron sputtering (CFUBMS) using separate MoS2 and Ti target in N2 gas environment. Pulsed dc power was applied for both the targets as well as for substrate biasing. Crystallographic orientation and structure of the coating was analysed by grazing incidence X-ray diffraction (GIXRD) technique. The surface morphology and coating fractograph were studied with field emission scanning electron microscopy (FESEM) whereas the composition of the coating was determined by energy dispersive spectroscopy (EDS) by X-ray. Scratch adhesion test, Vickers microhardness test and pin-on-disc test with cemented carbide (WC-6%Co) ball were carried out to investigate mechanical and tribological properties of the coating. Increase in MoSx content (from 6.22 wt.% to 30.43 wt.%) was found to be associated with decrease in grain size (from 63 nm to 24 nm). Maximum hardness of 32 GPa was obtained for TiN- MoSx composite coating. Film substrate adhesion was also observed to depend on MoSx content of the composite coating. Significant improvement in tribological properties was observed. With optimal MoSx content, it was possible to achieve low friction (µ = 0.02-0.04) and wear resistant (wear coefficient = 5.5 × 10− 16 m3/Nm) composite solid lubricant coating.  相似文献   

17.
In the present work, five kinds of nanocrystalline (MoxCr1?x)5Si3(x = 1, 0.78, 0.75, 0.64, 0.57) films with average grain size 8 nm have successfully been prepared on Ti6Al4V alloy by a double cathode glow discharge technique in order to improve its poor tribological properties. The influence of the Cr additions on the mechanical and tribological properties of nanocrystalline (MoxCr1?x)5Si3 films have been studied. The microstructure of the films was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Nanoindentation was used to measure hardness (H) and elastic modulus (E) of the as-deposited films, and the adhesion strength between the as-deposited films and substrate was evaluated by scratch test. The dry sliding wear properties of the as-deposited films were investigated using against different counterbodies (ZrO2 ceramic balls and GCr15 rolling bearing steel) in ball-on-disk system at room temperature. The results indicated that alloying additions of Cr affected considerably the wear performance of nanocrystalline (MoxCr1?x)5Si3 films. The friction coefficients and specific wear rates of nanocrystalline (MoxCr1?x)5Si3 films were significantly reduced by the increasing Cr substitution, and its specific wear rates have been shown to be two orders of magnitude lower than for Ti6Al4V alloy. The dominant wear mechanism of the nanocrystalline (MoxCr1?x)5Si3 films experiences a transition from delamination to tribo-oxidation wear, along with the increasing amount of Cr additions.  相似文献   

18.
Austenitic stainless steel AISI 321 is one of the most difficult-to-cut materials. In order to investigate the wear behavior of Si3N4 ceramic when cutting the stainless steel, wear tests are carried out on a pin-ondisk tribometer, which could simulate a realistic cutting process. Test results show that the wear of Si3N4 ceramic is mainly caused by adhesion between the rubbing surfaces and that the wear increases with load and speed. When oil is used for lubrication, the friction coefficient of the sliding pairs and the wear rate of the ceramic are reduced. A scanning electron microscope (SEM), an electron probe microanalyzer (EPMA), and an energy dispersive x-ray analyzer (EDXA) are used to examine the worn surfaces. The wear mechanisms of Si3N4 ceramic sliding against the stainless steel are discussed in detail.  相似文献   

19.
The tribological behavior of Babbitt alloy rubbing with Si3N4 ball and steel ball with various sliding speeds at dry friction condition was investigated. It was found that B88 alloy rubbing with Si3N4 ball and steel ball possesses a low sliding wear resistance at dry friction. The wear rate is above 10?4 mm3/Nm, and the friction coefficient is from 0.2 to 0.4. At low sliding speed of 0.05-0.1 m/s, the mainly wear mechanisms are microgroove and fatigue wear, while at high sliding speed of 0.5 m/s, the wear mechanisms depend on plastic deformation and delamination. The high wear rate indicates that it is needed to prevent Babbitt alloy from working at dry friction conditions, while the low friction coefficient suggests that it is not easy to the occurrence of cold weld.  相似文献   

20.
Friction and wear behavior of a peak aged Cu–0.65 wt.%Cr alloy was investigated. The friction and wear experiments were run under ambient conditions with a pin-on-disk tribometer. Experiments were performed using various applied normal loads and sliding velocities. The tribological behavior of the studied alloy was discussed in terms of friction coefficient, wear loss and wear mechanism.Friction coefficient and wear loss have shown large sensitivity to the applied normal load and the sliding velocity. At the sliding velocity of 0.3 m/s weight loss increased from 6.9 to 51 mg by increasing the normal load from 20 to 40 N. At higher sliding velocity minimum weight loss is achieved at 60 N normal load. So it can be seen that with increasing normal load wear rate decreases due to the formation of a continuous tribofilm which consists of Fe–Cu intermetallic. Varying of friction coefficients in different conditions of normal load and sliding velocity is correlated to the wear behavior.The analysis of worn surfaces by XRD and SEM showed that an increase in normal load and sliding velocity creates an intermetallic wear-induced layer, which modifies the wear behavior of the alloy. The XRD result indicates that new phase of Cu9.9Fe0.1 is generated on worn surfaces of the pin specimens during the wear tests. There is a significant correlation between the micrograph of worn surfaces and the wear rate of specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号