共查询到20条相似文献,搜索用时 15 毫秒
1.
a-CNx/TiN multilayer films were deposited onto high-speed steel substrates by pulsed laser ablation of graphite and Ti target alternately in nitrogen gas. The composition, morphology and microstructure of the films were characterized by energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The tribological properties of the films in humid air were investigated using a ball-on-disk tribometer. The multilayer films consist of crystalline TiN, metallic Ti and amorphous CNx (a-CNx). With an increase in thickness ratio of CNx to bilayer, the hardness of multilayer film decreases, friction coefficient decreases from 0.26 to 0.135, and wear rate increases. The film with thickness ratio of CNx to bilayer of 0.47 exhibits a maximum hardness of 30 GPa and excellent wear rate of 2.5 × 10− 7 mm3 N− 1 m− 1. The formation of tribo-layer was observed at contact area of Si3N4 ball. The film undergoes the combined wear mechanism of abrasion wear and adhesion wear. 相似文献
2.
1 Introduction In 1991, DECHER and his co-worker extended ILER’s pioneering work on fabrication of inorganic colloidal particle-based layer-by-layer assembled films to the preparation of polyelectrolyte-based layer-by-layer assembled films[1?3]. Now the… 相似文献
3.
The increasing interests in micro-electro-mechanical systems (MEMS) has raised the requirement for photoresist materials with improved friction and wear properties for mechanically loaded 3D shaped microstructures. In this work, SU8 photoresist layers reinforced with different amounts of silica nanoparticles were produced and thermally treated. Dry sliding tests indicate that SU8 composite epoxies produced in the form of thin films exhibit similar or even better tribological properties than bulk epoxies. The SU8 nanocomposites exhibit reduced wear rates and frictional coefficient compared to the un-reinforced material. Further, nanoparticle content, heat treatment and nature of the sliding counter piece were found to affect wear and friction. The tribological behaviour was discussed in terms of mechanical properties and contact pressures. 相似文献
4.
Myo Minn 《Surface & coatings technology》2008,202(15):3698-3708
The main purpose of this study is to explore the advantages of using a composite thin film of ultra high molecular weight polyethylene (UHMWPE) on a hard diamond like carbon (DLC) coating deposited on Si, for high wear life and low coefficient of friction. The experiments are carried out using a ball-on-disc tribometer at a constant linear speed of 0.052 m/s. A 4 mm diameter silicon nitride ball with a normal load of 40 mN is used as the counterface. The tribological results are discussed on the basis of hardness, elastic modulus, contact area, contact pressure and optical images of surface films. As a result of higher load carrying capacity (high hardness and elastic modulus), the wear life of Si/DLC/UHMWPE coated layer is approximately five times greater than that of Si/UHMWPE. Looking at the film thickness effect, UHMWPE film shows maximum wear resistance when the film is of optimum thickness (6.2 μm-12.3 μm) on DLC. Wear mechanisms of different UHMWPE thicknesses for Si/DLC/UHMWPE film are explained using optical microscopy of worn surfaces. Further, the use of perfluoropolyether (PFPE) ultra-thin film as the top layer on the composite coatings reduces the coefficient of friction to very low values (0.06-0.07) and increases the wear life of the films by several folds. 相似文献
5.
采用离子束溅射与磁过滤阴极弧共沉积技术在单晶硅片(400)表面制备Si含量(摩尔分数)为3.2%~15.5%范围内的TiSiN薄膜。采用X射线光电子能谱(XPS)、电子散射谱(EDS)、X射线衍射仪(XRD)研究TiSiN薄膜的显微结构和力学性能。结果表明:低Si含量的薄膜以面心立方晶型的Ti(Si)N固溶体形式存在,择优晶面为(200)面;当Si含量饱和后,出现Ti(Si)N和Si3N4非晶相,形成Ti(Si)N/Si3N4纳米复合结构。薄膜硬度范围在22~26GPa,采用Si3N4小球为对偶时薄膜的摩擦因数均维持在0.13~0.17之间。Si含量为10.9%时,硬度达最大值,结合较低的粗糙度,使其摩擦因数和磨损率达到最低值。 相似文献
6.
TiSiN coatings with a thickness of 2.5 μm were deposited using a Large Area Filtered Arc Deposition (LAFAD) technique with TiSi targets having different Si content. The influence of the Si content in the coatings on the mechanical properties and tribological behaviors of the TiSiN coatings were systematically studied using nanoindentation and a pin-on-disk tribometer. Nanoindentation results show that the hardness and Young's modulus of the TiSiN coatings increase with increasing Si content in the coatings. Wear test results indicate that the wear rate and friction coefficient of the 440a stainless steel coupons were significantly reduced by deposition of the TiSiN coatings, and the tribological behaviors of the TiSiN coatings are strongly dependent on the Si content in the coatings and the testing ball material. TiSiN coatings exhibit similar friction coefficient when tested against Al2O3 and 302 stainless steel balls, but increasing Si content in the coatings causes an increase in the friction coefficient of the TiSiN coatings. With the increase in the Si content in the coatings, the wear rate of the TiSiN coatings decreases when tested against Al2O3 balls, but increases significantly when tested against 302 stainless steel balls. The capability of forming a transfer layer on the ball surface contributes to the change in the friction coefficient and wear rate with Si content in the coating and ball materials. 相似文献
7.
Z.W. XieL.P. Wang X.F. WangL. Huang Y. LuJ.C. Yan 《Surface & coatings technology》2011,206(6):1293-1298
Diamond-like carbon (DLC) and TiAlSiCN nanocomposite coatings were synthesized by multi-plasma immersion ion implantation and deposition. The DLC content in the composite coating was controlled by the flow ratio of N2 to C2H2 during the deposition process. The microstructure and tribological properties of the as-deposited coatings were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), nanoindentation and ball-on-disk friction tests. The TEM results show that all the DLC-TiAlSiCN coatings had a two phase composite structure of the TiCN nanocrystals embedded in an amorphous matrix consisting of a-Si3N4, a-SiC, a-CN and DLC. TEM observations also reveal that the spacing between the adjacent nanocrystals increases with DLC content. In addition, the DLC-TiAlSiCN nanocomposite coating with a small crystalline spacing of about 0.6 nm shows a higher hardness up to 50 GPa and a larger friction coefficient. An increase in the DLC content of the coating benefits its friction coefficient while its hardness decreases. The friction coefficient reduces to 0.14 when the DLC content is about 31%. 相似文献
8.
三维自组装膜的制备及其摩擦磨损试验 总被引:1,自引:0,他引:1
利用二甲基亚砜(DMSO)对高岭土进行改性,通过原位聚合反应制备PET/高岭土纳米复合材料.为便于自组装,利用高分子网络凝胶法的空间限域作用制备单分散性PET/高岭土复合微球,并利用改进的蒸发诱导自组装法(EISA)制备出具有均匀凹坑/凸包微结构分布的IPN聚合物/PET/高岭土薄膜,通过正交试验法研究了微球平均粒径、... 相似文献
9.
The multi-arc ion plating technology was employed to prepare the molybdenum films with thickness of 3 μm on the AISI 1045 steel. The wear and scuffing tests were carried out on the ball-on-disc tester. AFM and SEM equipped with EDS were adopted to observe and analyze the morphologies and element compositions of surface,cross-section and worn scar of the Mo film. The phase structure was studied by XRD and the bonding strength between Mo film and substrate was measured by scratching tester. The tribological experiments show that the Mo film possesses a good wear-resistance and an excellent anti-scuffing property. The failure mechanism of Mo film under extreme condition is flaking off. 相似文献
10.
Cr-W-N and Cr-Mo-N films were deposited on high speed steel substrate by unbalanced DC reactive magnetron sputtering. Cross-sectional scanning electron microscopy (SEM) morphologies of the films confirmed that the bilayer thickness of multilayer became thinner, and then structural transformation occurred from multilayer to composite with increasing the rotation velocity of substrate holder. X-ray diffraction (XRD) patterns indicated that the Cr-W-N films were composed of CrN and W2N crystalline phases, and the Cr-Mo-N films consisted of crystalline CrN and amorphous/nanocrystalline Mo2N. Mechanical and tribological properties were investigated by using a nanoindentor and a ball-on-disk tribometer, respectively. The Cr-W-N films exhibited excellent mechanical properties and wear resistance, while Cr-Mo-N films showed lower friction coefficient. Optimal mechanical and tribological properties were obtained in the Cr-W-N multilayer film with a bilayer period of 12 nm. 相似文献
11.
12.
表面修饰Cu纳米微粒的制备及摩擦学性能(英文) 总被引:2,自引:0,他引:2
利用两相萃取法合成了二辛基胺二硫代氨基甲酸(DTC8)表面修饰铜纳米微粒;采用X射线衍射仪、透射电子显微镜、红外光谱仪表征了铜纳米颗粒的尺寸、形貌和结构,采用四球摩擦磨损试验机评价了纳米铜添加剂在液体石蜡中的摩擦学性能,并采用扫描电子显微镜观察了磨斑形貌。结果表明:DTC8修饰铜纳米微粒的粒径较小,粒径分布较窄。与此同时,表面修饰纳米铜作为润滑油添加剂具有优异的抗磨性能,这可能是由于熔点低且易变形的纳米铜可填充磨损表面微坑而起到自修复作用所致。 相似文献
13.
Ni-P-多壁碳纳米管复合镀层的制备及摩擦磨损性能(英文) 总被引:1,自引:0,他引:1
采用湿式球磨对多壁碳纳米管(MWNTs)预处理,通过化学镀制备Ni-P-MWNTs复合镀层;对45钢、传统Ni-P镀层和Ni-P-MWNTs复合镀层在干摩擦条件下的摩擦磨损性能进行考察和比较。结果表明,球磨后MWNTs长径比降低,长度均匀,且多数端部处于敞开状态。与45钢和Ni-P镀层相比,Ni-P-MWNTs复合镀层的减摩耐磨能力显著强化。当复合镀层中MWNTs的质量分数为0.74%~1.97%时,其摩擦因数和磨损率随MWNTs含量的增加而减少;对于MWNTs质量分数为1.97%的复合镀层,其摩擦因数和磨损率仅为0.08和6.22×10?15m3/(N·m)。复合镀层优良的摩擦磨损性能归因于MWNTs优异的力学性能和自润滑特性。 相似文献
14.
M. Lubwama K.A. McDonnell J.B. Kirabira A. Sebbit K. Sayers D. Dowling B. Corcoran 《Surface & coatings technology》2012,206(22):4585-4593
The characteristics and tribological performance of DLC and Si-DLC films with and without Si–C interlayers were studied in this paper. The films were deposited on nitrile rubber using a closed field unbalanced magnetron sputtering ion plating system. The film properties and characteristics were determined by scanning electron microscopy (SEM), hydrophobicity studies, Raman spectroscopy and tribological investigations. Tribological performance of these films was investigated using a pin-on-disc tribometer under applied loads of 1 N and 5 N under conditions of dry and wet sliding. The effect of immersing the films in water on tribological performance was also examined. The results show that the morphology of the films had a crack-like network. At a substrate bias of − 30 V, the coatings were characterised by a very dense non-columnar microstructure. The highest value of the ratio of intensities of the D and G peaks (ID/IG) was 1.2 for Si-DLC film with Si–C interlayer. The lowest value of 0.7 was observed for DLC film. The contact angle (CA) of water droplets showed that the films were hydrophobic. These results are interpreted in terms of hybridisation of carbon in these coatings. The tribological investigation showed a dependence on both the tribological condition under investigation and the atomic percentage of Si in the films. At 5 N normal load the lowest wear depth was observed for DLC films. 相似文献
15.
Deng Jianxin Zhang HuiWu Ze Liu Aihua 《International Journal of Refractory Metals and Hard Materials》2011,29(5):631-638
The friction and wear behavior of the polycrystalline diamond (PCD) were evaluated in ambient air at temperatures up to 700 °C using a ball-on-disk high temperature tribometer. The wear surface features of the PCD were examined by scanning electron microscopy. Energy dispersive X-ray analysis was used to investigate the chemical composition. XRD experiments were performed to study the crystal structure of the PCD specimens at different temperatures. Results showed that the friction coefficient of the PCD is different depending on the temperature, and decreases with the increase of temperature. The PCD exhibited the lowest friction coefficient of approximately 0.16 in the case of 700 °C sliding operation. The difference of the worn surface features of the PCD after sliding at different temperatures is related to the chemical transformation during sliding wear tests. The surface damage of the PCD appears to happen around 600 °C accompanied by extensive Co phase extrusion out of PCD. Numerous micro-cracks both at the grain boundaries and in the grains are observed with the increase of temperature to 700 °C. At this temperature, surface graphitization of diamond is to be expected, and the formation of graphite on the wear track is beneficial to the reduction of friction coefficient. 相似文献
16.
QIUJijun JINZhengguo WUWeibing LIUXiaoxin CHENGZhijie 《稀有金属(英文版)》2004,23(4):311-316
CdS thin films were deposited by the ion layer gas reaction (ILGAR) method. Structural, chemical, topographical development as well as optical and electrical properties of as-deposited and annealed thin films were investigated by XRD,SEM, XPS, AFM and UV-VIS. The results showed that the thin films are uniform, compact and good in adhesion to the substrates, and the growth of the films is 2.8 nm/cycle. The evolution of structure undergoes from the cubic structure to the hexagonal one with a preferred orientation along the (002) plane after annealing at 673 K. An amount of C, O and C1 impudries can be reduced by increasing the drying temperature or by annealing in N2 atmosphere. It was found that the band gap of the CdS films shifts to higher wavelength after annealing or increasing film thickness. The electrical resistivity decreases with increasing annealing temperature and film thickness. 相似文献
17.
CrN/W2N multilayer films with various bilayer periods of 15-85 nm were deposited on high speed steel (W18Cr4V) substrates by means of DC closed field unbalanced magnetron sputtering. The morphology and microstructure of the multilayer films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The mechanical and tribological properties were evaluated using a nanoindentor, Rockwell and scratch tests and a conventional ball-on-disk tribometer, respectively. There were some transverse grains at the layer interface and the interface between the CrN and W2N layers was not so sharp owing to atom diffusion through the interface. In the bilayer period range, the microhardness, elastic modulus and adhesive strength of the CrN/W2N multilayer films increased with the decrease of bilayer period. The CrN/W2N multilayer film with a bilayer period of 15 nm showed the highest hardness (29.2 GPa), elastic modulus (376 GPa) and best adhesion strength, it also had the highest wear resistance and lowest friction coefficient. 相似文献
18.
1 INTRODUCTIONAntimonyorganiccompoundhavebeenwidelyusedasheatstabilizer ,fireretardant ,catalyzer ,andmedicineabroad[1~ 5] .Inourcountrythestudyofan timonyorganiccompoundwasseldomcarriedoutal thoughthereareplentifulantimonyresources .Heretheheatstabilityprope… 相似文献
19.
Titanium alloys are characterized by poor tribological properties, and the traditional use of titanium alloys has been restricted to nontribological applications. Surface texturing has been recognized as an effective means of surface engineering to improve tribological properties of sliding surfaces. In this study, the patterns of micro-dimple with different dimples density were fabricated on the surface of Ti-6Al-4V by using laser. The effect of dimples density on the friction behavior of the titanium alloy was investigated under dry friction and coated MoS2. The results showed that the textured surface with higher dimples density had lower friction coefficients only at low load and speed under dry friction. When combining the solid lubricant with dimples, some textured samples showed excellent tribological performance for all applied loads. The optimum surface pattern was found, and the mechanisms for friction reduction and anti-wear were discussed. 相似文献
20.
Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical and electrical properties of IWO thin films were investigated. The thickness and surface morphology of the films are both closely dependent on the sputtering power and the substrate temperature. The transparency of the films decreases with the increase of the sputtering power but is not seriously influenced by substrate temperature. All the IWO thin film samples have high transmittance in near-infrared spectral range. With either the sputtering power or the growth temperature increases, the resistivity of the film decreases at the beginning and increases after the optimum parameters. The as-deposited IWO films with minimum resistivity of 6. 4× 10-4 Ω·cm were obtained at a growth temperature of 225 ℃ and sputtering power of 40 W, with carrier mobility of 33. 0 cm2· V-1·s-1 and carrier concentration of 2. 8× 1020 cm-3 and the average transmittance of about 81% in near-infrared region and about 87% in visible region. 相似文献