首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermal barrier coatings (TBCs) with nano-multilayer structure were investigated by thermal shock test. The change of insulation effect during thermal shock test was studied by in-situ temperature monitor with a thermal couple set into the substrate. Microstructure and electrical properties of TBCs were characterized by SEM and Impedance Spectroscopy, respectively. Initial increase in insulation effect was observed and related to the formation and growth of perpendicular microcracks in top coat and transversal microcracks in TGO. With thermal shock, the insulation effect decreased due to the further growth of microcracks in top coat and TGO which induced the failure of TBCs.  相似文献   

2.
A study has been undertaken of the characteristics exhibited by mullite-rich plasma electrolytic oxide coatings grown on aluminium alloys by using silicate-rich electrolytes. It is found that they can be grown at a higher rate, and to a greater thickness, than alumina PEO coatings on aluminium. The thermal conductivity of these coatings has been measured using a steady-state method. It is shown to be of the order of 0.5 W m− 1 K− 1, which may be compared with ∼ 1.5 W m− 1 K− 1 for pure alumina PEO coatings and ∼ 10-15 W m− 1 K− 1 for dense polycrystalline mullite. Coupled with excellent substrate adhesion and good mechanical properties, this relatively low conductivity makes these coatings attractive for thermal barrier applications. Furthermore, they are shown to exhibit a relatively low global stiffness (∼ 40 GPa), which will reduce the magnitude of thermally-induced stresses and improve the resistance to spallation during temperature changes.  相似文献   

3.
During the last decade a number of ceramic materials, mostly oxides have been suggested as new thermal barrier coating (TBC) materials. These new compositions have to compete with the state-of-the-art TBC material yttria stabilized zirconia (YSZ) which turns out to be difficult due to its unique properties. On the other hand YSZ has certain shortcomings especially its limited temperature capability above 1200 °C which necessitates its substitution in advanced gas turbines.In the paper an overview is tried on different new materials covering especially doped zirconia, pyrochlores, perovskites, and aluminates. Literature results and also results from our own investigations will be presented and compared to the requirements. Finally, the double-layer concept, a method to overcome the limited toughness of new TBC materials, will be discussed.  相似文献   

4.
One- and two-dimensional thermal models were developed to predict the thermal response of tubes with and without thermal barrier coatings (TBCs) tested for short durations in a H2/O2 rocket engine. Temperatures were predicted using median thermophysical property data for traditional air plasma sprayed ZrO2–Y2O3 TBCs, as well as air plasma sprayed and low pressure plasma sprayed ZrO2–Y2O3/NiCrAlY cermet coatings. Good agreement was observed between predicted and measured metal temperatures. It was also shown that the variation in the reported values of the thermal conductivity of plasma sprayed ZrO2–Y2O3 coatings can result in temperature differences of up to 180°C at the ceramic/metal interface. In contrast, accounting for the presence of the bond coat or radiation from the ceramic layer had only a small effect on substrate temperatures (<20°C). The thermal models were also used to show that for the short duration test conditions of this study, a 100 μm thick ZrO2–Y2O3 coating would provide a metal temperature benefit of approximately 300°C over an uncoated tube while a 200 μm thick coating would provide a benefit greater than 500°C. The difference in the thermal response between tubes and rods was also predicted and used to explain the previously-observed increased life of TBCs on rods over that on tubes.  相似文献   

5.
Thermal barrier coatings (TBCs) were deposited by an Air Plasma Spraying (APS) technique. The coating comprised of 93 wt.% ZrO2 and 7 wt.% Y2O3 (YSZ); CoNiCrAlY bond coat; and AISI 316L stainless steels substrate. Thermal cyclic lives of the TBC were determined as a function of bond coat surface roughness, thickness of the coating and the final deposition temperature. Two types of thermal shock tests were performed over the specimens, firstly holding of specimens at 1020 °C for 5 min and then water quenching. The other test consisted of holding of specimens at the same temperature for 4 min and then forced air quenching. In both of the cases the samples were directly pushed into the furnace at 1020 °C. It was observed that the final deposition temperature has great impact over the thermal shock life. The results were more prominent in forced air quenching tests, where the lives of the TBCs were observed more than 500 cycles (at 10% spalling). It was noticed that with increase of TBC's thickness the thermal shock life of the specimens significantly decreased. Further, the bond coat surface roughness varied by employing intermediate grit blasting just after the bond coat spray. It was observed that with decrease in bond coat roughness, the thermal shock life decreased slightly. The results are discussed in terms of residual stresses, determined by hole drill method.  相似文献   

6.
Thermal Barrier Coating (TBC) systems are frequently used in gas turbine engines to provide thermal insulation to the hot-section metallic components and also to protect them from oxidation, hot corrosion and erosion. Surface sealing treatments, namely laser-glazing, have been showing a high potential for extending in-service lifetimes of these systems by improving chemical and thermo-mechanical resistance. In this investigation, both as-sprayed and laser-glazed TBCs were exposed to hot corrosion in molten salts. The glazed coatings were obtained by scanning the surface of the plasma-sprayed coatings with either a CO2 or a Nd:YAG laser. The hot corrosion investigation was accomplished by subjecting the specimens to an isothermal air furnace testing under V2O5 and/or Na2SO4 at a temperature of 1000 °C for 100 h. Spallation has been observed in coatings in the as-sprayed condition under V2O5 or V2O5 + Na2SO4. Na2SO4 itself had no or minimal effect on the degradation of the laser-glazed or as-sprayed condition coatings, respectively. The degradation in V2O5 was accomplished by destabilization of YSZ as a consequence of depletion of yttria from the solid solution to form YVO4 and therefore led to the disruptive transformation of the metastable tetragonal phase to the monoclinic phase. Moreover, the presence of both corrosive salts induced the formation of large high aspect ratio YVO4 crystals that introduced additional stresses and contributed to the degradation of the coatings. The laser-glazed specimens were not efficient in avoiding the molten salt penetration along the thickness direction due to the presence of cracks on the glazed layer. However due to a reduced specific surface area of the dense glazed layer, the corrosion reaction of the molten salts with the YSZ has been lower than in coatings in the as-sprayed condition.  相似文献   

7.
The primary intention of this work is to investigate the thermo-mechanical buckling delamination failure characteristic of air plasma sprayed thermal barrier coatings (TBCs) under compression tests at high temperature. The TBCs samples with a pre-delamination were firstly designed and they had been successfully prepared by air plasma sprayed technique. The main novelty of this paper is that the first work to validate and obtain three kinds of the interface failure forms in TBCs system during compression tests, i.e. buckling delamination, edge delamination and global buckling failure. The effects of the initial delamination length, temperature gradient and applied mechanical load on the delamination resistance of the TBCs system were discussed in detail. It is difficult to observe buckling delamination or edge delamination failure phenomena until the initial delamination length in TBCs reaches or exceeds 4 mm or more. For edge delamination failure, the interface fracture toughness (ΓiII), energy release rate (Gssedge) and stress intensity factor (KII) between the TBC/TGO interface were 35 J m− 2, 38.8 J m− 2 and 0.97 MPa at high temperature gradient, respectively. Using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX), it was inferred that the delamination fracture located within the ceramic coating close to the TBC/TGO interface. The results agree well with other experimental and theoretical results.  相似文献   

8.
Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot-pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 °C. The average CTE value was found to be ∼ 9.6 × 10− 6/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Preliminary results of thermal conductivity testing at 1600 °C for LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma-sprayed on NiCrAlY/Rene N5 superalloy substrates are also presented. The plasma-sprayed coatings did not sinter even at temperatures as high as 1600 °C.  相似文献   

9.
Thermal fracture mechanisms in ceramic thermal barrier coatings   总被引:6,自引:0,他引:6  
Ceramic thermal barrier coatings (TBCs) represent an attractive method of increasing the high-tempera-ture limits for systems such as diesel engines, gas turbines, and aircraft engines. However, the dissimilari-ties between ceramics and metal, as well as the severe temperature gradients applied in such systems, cause thermal stresses that can lead to cracking and ultimately spalling of the coating. This paper reviews the research that has considered initiation of surface cracks, initiation of interfacial edge cracks, and the effect of a transient thermal load on interface cracks. The results of controlled experiments are presented together with analytical models. The implications of these findings to the differences between diesel en-gines and gas turbines are discussed. The importance of such work for determining the proper design cri-teria for TBCs is underlined.  相似文献   

10.
Thermal barrier coatings (TBCs) often encounter temperature cycling in the course of normal operation. In the absence of actual or simulated engine test facilities, accelerated furnace thermal cycling experiments are frequently devised to evaluate the response of various TBCs. This study, which deals with yttria-stabilized and magnesia-stabilized zirconia systems, shows that the performance of a TBC is significantly governed by the severity of the time-temperature schedule employed. More importantly, the ranking of the two zirconia-base TBCs also is influenced by the adopted thermal cycling test schedule. These findings have ramifications in the design of suitable accelerated tests for TBC evaluation.  相似文献   

11.
对比研究了等离子喷涂梯度热障涂层与双层热障涂层,试验中梯度热障涂层选用不同比例的NiCoCrAlY与ZrO2-8%Y2O3复合粉末作为梯度过渡层材料,并对两种结构的热障涂层进行了抗热震性能试验。抗热震试验结果表明,梯度热障涂层的抗热震寿命明显高于双层热障涂层的抗热震寿命。  相似文献   

12.
The mechanical properties of nanostructured yttria stabilized zirconia (YSZ) coatings were investigated using an instrumented indentation technique. Coatings were produced using the Triple-Torch Plasma Reactor (TTPR) where three plasma jet plumes converge to form a single jet where powder is injected axially. Partially fused clusters of sub-micron particles are characteristic for the coating microstructure. Flattened particles, termed as splats that are typical for conventional YSZ coatings were not observed.The microstructure exhibits a low isotropy that is related to variations in mechanical properties that are measured in directions parallel (normal to the coating plane) and perpendicular to the spray direction (in the plane of the coating). The microstructure of the nanostructured coating, which is different from a conventional coating, has a significant effect on the anisotropy of the mechanical properties. The in-plane elastic modulus of the nanostructured coating is lower than the normal modulus, as opposed to a conventional YSZ coating where the ratio is inversed. Multiple indentations arranged in arrays were used to map the variation in mechanical properties. Indentation results obtained using spherical and Vickers indenters are compared.  相似文献   

13.
New LaMgAl11O19 (LaMA)/YSZ double ceramic top coat thermal barrier coatings (TBCs) with the potential application in advanced gas-turbines and diesel engines to realize improved efficiency and durability were prepared by plasma spraying, and their thermal cycling failure were investigated. The microstructure evolutions as well as the crystal chemistry characteristics of LaMA coating which seemed to have strong influences on the thermal cycling failure of LaMA and the new double ceramic top coat TBCs based on LaMA/YSZ system were studied. For double ceramic top coat TBC system, interface modification of LaMA/YSZ by preparing thin composite coatings seemed to be more preferred due to the formations of multiple cracks during thermal cycling making the TBC to be more strain tolerant and as well as resulting in an improved thermal cycling property. The effects of the TGO stresses on the failure behavior of the TBCs were discussed through fluorescence piezo-spectroscopy analysis.  相似文献   

14.
Nanomechanical testing (nano-impact and nanoindentation mapping) has been carried out on the top surfaces of as-received and aged 8 wt.% yttria stabilised zirconia (YSZ) thermal barrier coatings (TBCs) produced by electron-beam physical vapour deposition (EB-PVD). The correlation between the nanomechanical test results and the previously reported erosion resistance of the TBCs has been investigated. The experimental results revealed that aged TBCs on zirconia for 24 h at 1500 °C or on alumina for 100 h at 1100 °C resulted in large increases in their hardness (H), modulus (E), H/E and H3/E2 ratios but their erosion resistance was reduced. Nano-impact tests showed a dramatic decrease in impact resistance following the ageing of these TBCs, which is consistent with the erosion results. The strong correlation between the nano-impact and erosion resistances has confirmed the premise that rapid laboratory impact tests must produce deformation with similar contact footprint to that produced in the erosion tests.  相似文献   

15.
The microstructure of thermal barrier coatings (TBCs) of 7 wt.% Y2O3 stabilized ZrO2 (7YSZ) deposited using the solution-precursor plasma spray (SPPS) method has: (i) controlled porosity, (ii) vertical cracks, and (iii) lack of large-scale “splat” boundaries. An unusual feature of such SPPS TBCs is that they are well-adherent in ultra-thick forms (~ 4 mm thickness), where most other types of ultra-thick ceramic coatings fail spontaneously. Here a quantitative explanation is provided as to why as-deposited ultra-thick SPPS TBCs are so well-adherent. The mode II toughness of thin (0.2 mm) SPPS TBCs has been measured using the “barb” shear test, which is found to be 66 J m− 2. Residual stresses in SPPS TBCs of thickness 0.2, 1.5, and 4.0 mm have been estimated using a microstructure-based object-oriented finite element (OOF) method. These stresses are found to be low, as a result of the strain-tolerant microstructure of the SPPS TBCs. The corresponding strain energy release rates that drive mode II cracks in the three different thickness SPPS TBCs have been found to be less than the mode II toughness.  相似文献   

16.
Plasma-sprayed thermal barrier coatings (TBCs) present a challenge for optical diagnostic methods to monitor TBC delamination, because the strong scattering exhibited by plasma-sprayed TBCs severely attenuates light transmitted through the TBC. This paper presents a new approach that indicates delamination in plasma-sprayed TBCs by utilizing a luminescent sublayer that produces significantly greater luminescence intensity from delaminated regions of the TBC. Freestanding coatings were produced with either a Eu-doped or Er-doped yttria-stabilized zirconia (YSZ) luminescent layer below a plasma-sprayed undoped YSZ layer. A NiCr backing layer was added to represent an attached substrate in some sections. For specimens with a Eu-doped YSZ luminescent sublayer, luminescence intensity maps showed excellent contrast between unbacked and NiCr-backed sections. Discernable contrast between unbacked and NiCr-backed sections was not observed for specimens with a Er-doped YSZ luminescent sublayer, because luminescence from Er impurities in the undoped YSZ layer overwhelmed luminescence originating from the Er-doped YSZ sublayer.  相似文献   

17.
Air plasma sprayed ZrO2–8wt%Y2O3 thermal barrier coatings were deposited under tightly controlled conditions. The lengths and orientations of the horizontal cracks and vertical cracks in these coatings were characterized in detail, and process/structure maps of the crack distribution as a function of particle and substrate states were constructed. A fully coupled thermo-mechanical finite element model was used to study the buildup of stresses during splat solidification, and to understand the effect of deposition conditions on crack formation during plasma spray deposition. The model also showed that surface roughness plays a key role in determining the magnitude of maximum stresses, and that only roughness features on the scale of splat thickness are important in providing locations of maximum stress concentration.  相似文献   

18.
NiCrAlY/YPSZ and NiCrAlY/NiAl/YPSZ thermal barrier coatings (TBCs) were successfully deposited by detonation spraying. The results indicated that the detonation sprayed TBCs included a uniform ceramic coat containing a few microcracks and a bond coat with a rough surface. The lamellar structure and the presence of cracks and impurities could reduce the thermal conductivity of the ceramic coat. Oxidation kinetics at 1000–1150 °C of detonation sprayed TBCs have been measured and discussed. The role of a Ni–Al intermediate layer in improving the oxidation resistance of duplex TBCs has also been studied.  相似文献   

19.
A combined pre-annealing and pre-oxidation treatment was developed for the processing of partially yttria stabilized (PYSZ) thermal barrier coatings (TBC) on top of NiCoCrAlY bond coatings (BC). To develop this pre-treatment, the influence of the oxygen potential during pre-annealing and pre-oxidation on the life span and failure mechanisms of the entire high temperature coating system upon thermal cycling was investigated. The results of this study showed that the service life of the coating system depended strongly on the composition and microstructure of the thermally grown oxide (TGO) after pre-oxidation. The longer life spans were obtained if the TGO thickened very slowly during thermal cycling due to a large α-Al2O3 grain size. Such a slow-growing TGO corresponded with a pre-treatment for which θ-Al2O3 was formed during pre-oxidation and for which the yttrium was located within a high density of pegs along the TGO/BC interface after pre-oxidation. If the yttrium was present on top of the TGO after pre-oxidation, a thick mixed alumina-zirconia layer formed upon thermal cycling. This mixed oxide layer contributed significantly to the total oxide layer thickness, resulting in short life spans. The formation of NiAl2O4 spinel in between the TBC and the α-Al2O3 should be avoided, since this can lead to premature failure along the spinel/α-Al2O3 interface.  相似文献   

20.
运用微弧等离子喷涂制备了碳化硅晶须(SiCw)掺杂部分稳定ZrO2(YPSZ)复合热障涂层(CTBCs),对涂层进行了显微组织观察、EDS分析、XRD分析和抗热震性能试验.喷涂过程中,复合粉末里的部分SiCw在高温下分解产生的气体夹杂在熔融的颗粒内形成气孔,另一部分沉积在涂层中起到降低热应力和钉扎、桥联作用.结果表明,随着粉末中SiCw含量的增加,复合陶瓷层的孔隙率呈增大趋势;复合涂层的抗热震性能优于单纯氧化锆涂层,SiCw含量为20%的复合涂层的抗热震性能最优.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号