首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twelve La2O3 doped diamond-like carbon (DLC) nanofilms were deposited using unbalanced dual-magnetron sputtering. AFM, XRD, Raman spectroscopy, AES, XPS, TEM, contact surface profiler and nanoindenter were employed to investigate the structure and tribological properties of deposited films. The results show that the La2O3 doped DLC films are amorphous. La2O3 doping obviously decreases internal stress, and effectively increases the elastic modulus. This results from the dissolving and dissolution of La2O3 within the amorphous DLC matrix. Furthermore, the friction coefficient of the doped DLC films decreases, and adhesion strength increases. These are attributed to the lubrication function of La2O3 and the formation of transition layer at interface, respectively.  相似文献   

2.
Sintered Mo with the addition of La2O3/MoSi2 was prepared via the process of solid–solid doping + powder metallurgy. X-ray diffraction experiment, hardness test, three-point bending test and high-temperature tensile test were carried out to characterize the samples. The XRD pattern of a typical sample shows that the sintered Mo was mainly composed of Mo, La2O3 and Mo5Si3. Mo5Si3 was probably formed through the reaction between MoSi2 and the Mo matrix. Densities and fracture toughnesses of both doped Mo and pure Mo were measured and contrasted. Sintered Mo with the addition of 0.2 wt% La2O3/MoSi2 has the highest toughness, while more addition of La2O3/MoSi2 has smaller effect on improving toughness or even embrittles Mo. The results of three-point bending test and high-temperature tensile test show that the bending strength and high-temperature tensile strength of doped Mo are both higher than those of pure Mo. The formation of Mo5Si3 improves the high-temperature strength. The La2O3/Mo5Si3 dispersed in the Mo matrix refined the grains, and thus strengthened the Mo matrix by dispersion strengthening and grain refinement.  相似文献   

3.
以La2O3粉、Al粉、CuO粉为反应物原料、纯铜为基体,采用原位合成技术和近熔点铸造法制备颗粒增强Cu基复合材料,研究La2O3对Al-CuO体系制备的Cu基复合材料组织及性能的影响。结果表明:添加La2O3可获得纳米Al2O3颗粒,且弥散分布于Cu基体中,制备的材料组织更加细小、均匀,其材料的电导率及摩擦磨损性能明显提高。当添加0.6%wtLa2O3,复合材料的电导率达到90.2%IACS,磨损量达到最小,相比未添加La2O3,其导电率提高10.1%,磨损量减小36.6%。  相似文献   

4.
The effects of La2O3 and HfO2 addition on thermal conductivity and thermal cycle life of EB-PVD YSZ coatings were investigated. La2O3 and HfO2 were selected as additives, because they significantly suppress the sintering of YSZ. The developed coating showed low thermal conductivity as well as high resistance to sintering. Burner rig tests confirmed that the developed coating have a superior thermal insulating effect and have a longer life than that of a coating with conventional composition.  相似文献   

5.
本研究以激光工艺制备了添加纳米La2O3初料的镍基涂层。激光熔覆之前,高能球磨机充分混合的Ni60A和La2O3粉床预置于基体30CrMnSiNi2A表面。La偏聚于枝晶间从而限制了二次枝晶的成长和熟化。显微组织得到了细化。由于更高的La富集,涂层上表面显微组织细化更为显著,这一现象的上述解释得到EPMA结果佐证。同时EPMA结果说明Fe稀释会造成涂层硬度降低。熔覆涂层经过RE显微组织细化和净化,硬度、耐磨性均相对基体金属显著提升,而涂层中裂纹和孔隙均未出现。Ni60A-La涂层的摩擦系数曲线COF明显低于基体和Ni60A涂层,Ni60A-La磨擦体积损失率分别少于基体和Ni60A涂层数值的1/10和1/5,显微硬度值是基体4倍。  相似文献   

6.
本文采用甘氨酸-硝酸盐法(GNP)和溶胶凝胶法分别合成了Sm0.1Nd0.1Ce0.8O1.9(SNDC) 和La2Mo2O9(LAMOX)粉末,并用常压烧结的方法制备了不同比例的SNDC和LAMOX的复合材料,通过XRD和SEM等手段表征了不同复合比例样品的物相和表面形貌并测试了烧结样品的电导率。结果表明,复合样品的电导率在相变点前后随着复合量增加变化趋势相反,其中LAMOX含量为20mol%的样品在550℃时的电导率能达到0.01S/cm,高于同温度下SNDC电导率。  相似文献   

7.
La2Mo2O9具有极低的热导率,但其在580℃左右会发生α-β相变,严重影响其性能和应用。本实验以Gd203掺杂La2Mo2O9制备了一系列La2-xGdxMo2O9 (x=0.0~0.5)固溶体,研究了掺杂Gd3+对La2Mo2O9相稳定性和热导率的影响。结果表明,随着Gd3+掺杂量的增加,相变得到有效抑制,当x≥0.2时样品以β相存在。样品的热导率随Gd3+掺杂量的增加先减小后增加,室温下在x=0.2时达到最低,此后缓慢上升,但所有样品的热导率均小于1 W/(m·K)。  相似文献   

8.
以仲丁醇铝为前驱体,采用溶胶-凝胶法结合丙酮-苯胺原位生成水技术,通过乙醇超临界干燥,制备出不同含量(1.5 mol%~12 mol%)La2O3掺杂的氧化铝气凝胶。采用电子扫描电镜(SEM)、透射电子显微镜(TEM)、X线衍射仪(XRD)、N2吸附分析仪等仪器表征了La2O3掺杂对氧化铝气凝胶的微结构和耐温性能的影响。结果表明:La2O3的引入使氧化铝气凝胶的形貌由球状颗粒向大的片状结构转变。适量的La2O3掺杂能提高氧化铝气凝胶的比表面积,9 mol% La2O3掺杂的氧化铝气凝胶比表面积最大。通过La2O3掺杂,能够抑制氧化铝晶粒在高温下的生长和α-Al2O3的相变,提高氧化铝气凝胶的耐温性能。1200℃热处理后,La2O3掺杂的氧化铝气凝胶仍维持在θ-Al2O3,比表面积为86.5 m2/g,高于未掺杂的氧化铝气凝胶(46 m2/g)。  相似文献   

9.
采用溶液前驱体等离子喷涂(solution precursor plasma spray,SPPS)方法制备了La2Ce2O7涂层。通过SEM、XRD、EDS、激光导热仪对制备的涂层进行了表征,应用STA-FTIR-QMS联用技术对La2Ce2O7干燥前驱体的分解过程进行了研究,分析了前驱体的分解温度及分解过程,从而确定了喷涂温度为450℃。通过正交实验确定了雾化压力0.1MPa、电流700A、送液速率23 mL/min为最佳喷涂工艺参数,用此参数喷涂20遍制备的La2Ce2O7涂层厚度达到121μm,相对密度为92.4%,硬度为2.1 GPa。结果表明,得到了热导率较低、元素分布均匀、具有萤石结构的La2Ce2O7热障涂层。  相似文献   

10.
采用高温反应熔渗工艺制备了ZrB2-SiC和La2O3改性ZrB2-SiC涂层C/C复合材料,对比了2种涂层试样在中温(7001100℃)、高温(12001500℃)和超高温(2000℃以上)3个温域范围内的抗氧化性能。结果表明:7001100℃范围内,随着温度的升高,La2O3改性涂层试样的抗氧化性能提升幅度在逐渐提高。1200℃1500℃范围内,涂层均表现出良好的长时抗氧化性能,La2O3改性ZrB2-SiC在1200℃下恒温氧化250 h后,仍保持微量的增重;涂层复合材料良好的高温抗氧化性能主要其在是由于氧化过程中涂层表面形成的La-Si-O复合玻璃层和钉扎相ZrSiO4的协同作用提升了氧化膜的高温稳定性。在2000℃以上的氧乙炔火焰烧蚀环境下,La2O3的添加使得ZrB2-SiC涂层的质量烧蚀率和线烧蚀率均降低了近50%,其主要归因于表层La-Si-O和ZrO2玻璃层对烧蚀缺陷的愈合作用。  相似文献   

11.
Al2O3, Al2O3-Cr2O3 and Cr2O3 coatings were deposited by atmospheric plasma spraying. Phase composition of powders and as-sprayed coatings was determined by X-ray diffraction. Electron probe microanalyzer was employed to investigate the polished and fractured surface morphologies of the coatings. Mechanical properties including microhardness, fracture toughness and bending strength were evaluated. The results indicate that the addition of Cr2O3 is conducive to the stabilization of α-Al2O3. Compared with the pure Al2O3 and Cr2O3 coatings, Al2O3-Cr2O3 composite coatings show lower porosities and denser structures. Heterogeneous nucleation of α-Al2O3 occurs over the isostructural Cr2O3 lamellae and partial solid solution of Al2O3 and Cr2O3 might be occurring as well. Furthermore, grain refining and solid solution strengthening facilitate the mechanical property enhancement of Al2O3-Cr2O3 composite coatings.  相似文献   

12.
Coloured Al2O3/ZrO2 multilayers have been deposited onto WC-Co based inserts by a CVD process. Through physical as well as optical analysis of such multilayers, colour is believed to originate from interference. The coatings are obtained with good process reproducibility. It was found that the ZrO2 process used in the multilayer, with ZrCl4 as the only metal chloride precursor, results in a mixture of tetragonal and monoclinic ZrO2 phases. However by adding a relatively small amount of AlCl3 during such a process results in ZrO2 layers being composed of predominantly tetragonal ZrO2 phase. Corresponding multilayers seem to have a more fine grained and smoother morphology whereas multilayers containing monoclinic ZrO2 phase seem to be less perfect with existence of larger grains of ZrO2 which are believed to scatter light and alter the reflectance of such a multilayer. In addition to this, such multilayers were found to be free of or with greatly reduced amount of thermal cracks, normally present in pure CVD grown Al2O3 layers.It is believed that, in the studied Al2O3/ZrO2 multilayers, the observed tetragonal ZrO2 phase is the result of a size effect, where small enough ZrO2 crystallites energetically favor the tetragonal phase. However as the ZrO2 crystallite size distribution is shifted to larger sizes it is believed that a mixture of crystallites with both stable and metastable tetragonal phases as well as a stable monoclinic phase is obtained. The proposed metastable tetragonal ZrO2 phase may in fact explain the absence of thermal cracks in such multilayers through a transformation toughening mechanism, well known in ZrO2 based ceramics.  相似文献   

13.
采用搅拌摩擦加工方法在Al基体中添加不同La2O3含量的混合粉末(Ni+La2O3),制备 (Ni+La2O3)/Al复合材料。采用SEM、EDS、 EPMA及XRD对复合区微观结构及相组成进行分析,采用室温拉伸试验对 (Ni+La2O3)/Al复合材料力学性能进行了测试。结果表明,随着La2O3含量的增加,(Ni+La2O3)/Al复合材料的组织和性能先变好后变差。当La2O3添加量达到5%时,复合材料中Al3Ni增强颗粒分布均匀、颗粒数量最多,块状的Ni粉团聚减少,其抗拉强度达到最大值215MPa,相比Ni/Al复合材料(抗拉强度176MPa),其抗拉强度提高了22%;当La2O3的添加量为7%时,复合材料中Al3Ni增强颗粒含量减少,块状Ni粉团聚重新出现,抗拉强度下降至201MPa。  相似文献   

14.
A kind of nanometric CeO2–ZrO2–Nd2O3 (CZN) solid solution for a carrier in the automotive three-way catalysts was synthesized by a coprecipitation method and characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption–desorption (BET), scanning electron microscopy (SEM) and oxygen storage capacity (OSC). For the purpose of comparison, an unincorporated CeO2–ZrO2 (CZ) was also synthesized. The XRD measurements disclose the prepared CeO2–ZrO2–Nd2O3 have a face-centered cubic fluorite structure and nanoparticle sizes. According to the results of XPS, Nd3+ ions can enter the CZ lattice and form a homogenous solid solution. Oxygen storage capacity measurements reveal that CeO2–ZrO2–Nd2O3 display high oxygen mobility at a low temperature. The results of the activity tests show that the catalyst exhibits good three-way catalytic activity and fairly wide range of air-to-fuel ratios.  相似文献   

15.
使用粉末冶金法将纳米级(70–80 nm)和微米级(500–600 nm)稀土氧化物(La2O3,Y2O3)与钨粉混合,随后通过冷等静压、中频感应烧结、旋锻、拉拔等一系列工艺制备了W-1.5La2O3-0.1Y2O3-0.1ZrO2(质量分数,%)材料。对含有纳米和微米尺寸稀土氧化物的阴极样品使用相同的焊接电流,分别进行了0.5、1、2 h的氩弧焊。结果表明,具有纳米级稀土氧化物的样品在焊接过程中表现出更高的工作稳定性,烧损同比降低了近85.4%。此外,随着工作时间的延长,阴极尖端不同区域的稀土氧化物聚集度显著增加。结合COMSOL Multiphysics温度模拟发现,第二相的扩散活化能降低了近34%。这是因为更为细小的第二相有效地控制了钨基体组织的演变,保留了大量晶界作为通道,促进了活性物质在电子发射过程中的扩散。  相似文献   

16.
为获得孔隙率高、隔热性能好的热障涂层CeO2-Y2O3-ZrO2(CYSZ),采用低温超音速火焰喷涂(LT-HVOF)和大气等离子喷涂(APS)工艺在K4169镍基高温合金表面分别沉积NiCoCrAlYTa粘结层和CeO2、Y2O3共同稳定的ZrO2空心粉CYSZ陶瓷层。通过扫描电子显微镜(SEM)和X射线衍射仪(XRD)对不同喷涂电流(500,600和700A)制备的CYSZ热障涂层和采用传统Y2O3稳定的ZrO2团聚粉7YSZ为陶瓷面层的热障涂层的组织结构进行观察分析,并测定其隔热性能。结果表明:与传统的7YSZ类似,CYSZ涂层主要组成相为四方t相,涂层呈典型层状结构,但相对于7YSZ,空心粉CYSZ涂层存在更多孔隙和微裂纹;在1 150℃时,随着喷涂电流的增大,隔热性能呈降低趋势,CYSZ涂层隔热性能比传统7YSZ涂层隔热性能好。  相似文献   

17.
The effects of K2O and Li2O-doping (0.5, 0.75 and 1.5 mol%) of Fe2O3/Cr2O3 system on its surface and the catalytic properties were investigated. Pure and differently doped solids were calcined in air at 400-600 °C. The formula of the un-doped calcined solid was 0.85Fe2O3:0.15Cr2O3. The techniques employed were TGA, DTA, XRD, N2 adsorption at −196 °C and catalytic oxidation of CO oxidation by O2 at 200-300 °C. The results revealed that DTA curves of pure mixed solids consisted of one endothermic peak and two exothermic peaks. Pure and doped mixed solids calcined at 400 °C are amorphous in nature and turned to α-Fe2O3 upon heating at 500 and 600 °C. K2O and Li2O doping conducted at 500 or 600 °C modified the degree of crystallinity and crystallite size of all phases present which consisted of a mixture of nanocrystalline α- and γ-Fe2O3 together with K2FeO4 and LiFe5O8 phases. However, the heavily Li2O-doped sample consisted only of LiFe5O8 phase. The specific surface area of the system investigated decreased to an extent proportional to the amount of K2O and Li2O added. On the other hand, the catalytic activity was found to increase by increasing the amount of K2O and Li2O added. The maximum increase in the catalytic activity, expressed as the reaction rate constant (k) measured at 200 °C, attained 30.8% and 26.5% for K2O and Li2O doping, respectively. The doping process did not modify the activation energy of the catalyzed reaction but rather increased the concentration of the active sites without changing their energetic nature.  相似文献   

18.
In-situ plasma spraying (IPS) is a promising process to fabricate composite coatings with in-situ formed thermodynamically stable phases. In the present study, mechanically alloyed Al-12Si, B2O3 and TiO2 powder was deposited onto an aluminum substrate using atmospheric plasma spraying (APS). It has been observed that, during the coating process, TiB2 and Al2O3 are in-situ formed through the reaction between starting powders and finely dispersed in hypereutectic Al-Si matrix alloy. Also, obtained results demonstrate that in-situ reaction intensity strongly depends on spray conditions.  相似文献   

19.
Glasses with different Bi2O3 contents (37-42 mol%) have been prepared by conventional melt quench technique. The IR and Raman studies indicate that these glasses are made up of [BiO6], [BiO3], [BO3] and [BO4] basic structural units. The vibrations of [BiO3] and [BO3] become stronger as the content of Bi2O3 increases, which makes glass structure loosened. Viscosity of the glasses was measured by using a Rheotronic III paralleled plate rheometry, which shows that the viscosity of glass samples decreased when the content of Bi2O3 increased at the same temperature (400-460 °C). The temperature range which suits for glasses sealing was calculated by using the approximation of Arrhenian behaviour. The wetting performance of Bi2O3-ZnO-B2O3 glasses was described by using high-temperature microscope, which also proves that the structure of investigated Bi2O3-ZnO-B2O3 glasses become loosened due to the increasing of the content of Bi2O3.  相似文献   

20.
采用反应合成法结合塑性变形工艺制备了不同SnO2含量的AgCuOIn2O3SnO2电触头材料,利用扫描电镜和金相显微镜表征了材料的微观形貌及显微组织,分析对比了不同SnO2含量的材料金相组织及其增强相的分布均匀性,并利用X射线衍射分析了材料的物相结构。测量了材料的抗拉伸强度、硬度、电阻等性能。结果表明:添加适量的SnO2能使组织中的孔隙尺寸缩小、其他缺陷明显减少。氧化物弥散分布在银基体中,极大地改善了AgCuOIn2O3电触头材料的显微组织均匀性。在SnO2含量不变时,材料的电阻率随塑性变形程度增加而有所降低;随着SnO2含量增多,电阻率呈现先降低后升高的趋势,最后趋于定值,约为2.4 μΩ·cm。添加SnO2后各试样材料的硬度均显著升高,SnO2含量为1%(质量分数)的材料具有最优的抗拉伸强度和延伸率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号