首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The corrosion behaviour of eutectic Zr50Cu40Al10 and hypoeutectic Zr70Cu6Al8Ni16 bulk metallic glasses (BMGs) was studied by electrochemical measurements, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Zr50Cu40Al10 BMG was highly susceptible to pitting corrosion in naturally aerated 0.5 M NaCl solution at 30 °C. In contrast, Zr70Cu6Al8Ni16 BMG passivated spontaneously under the same condition. EDX results for Zr50Cu40Al10 indicated that enrichment of Cu, Cl and O occurred in the pitted region, while for Zr70Cu6Al8Ni16 BMG, no significant difference was found in the surface composition from the specimens before and after immersion in the solution. XPS analysis including angle-resolved measurements for Zr70Cu6Al8Ni16 BMG revealed that zirconium cation (Zr4+) was highly concentrated in both air-formed and passive films. Furthermore, the concentration of Zr4+ ions after immersion for 24 h or more showed tendency to increase with decreasing take-off angle, indicating that the exterior part of the passive film consisted exclusively of zirconium oxyhydroxide. The high corrosion resistance of Zr70Cu6Al8Ni16 BMG was attributed to the formation of homogeneous and stable passive film enriched with zirconium.  相似文献   

2.
Nb- and Ta-based mixed nitrides have been grown by 3 keV N2+ nanoscale reactive ion beam mixing (IBM) of Nb/Si and Ta/Al interfaces. The kinetics of growth, composition and electronic structure of the films formed has been studied using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). A similar reactive IBM kinetics of three stages has been found for both interfaces by means of factor analysis. In a first stage, a mixture of substoichiometric and stoichiometric nitride species are formed up to ion doses of ~ 1.5 × 1016 ions/cm2. In a second stage, for ion doses up to ~ 5–6 × 1016 ions/cm2, subtoichiometric nitride species are completely transformed into stoichiometric nitride species. Subsequently, in a third stage, stoichiometric nitride species are transformed progressively into mixed nitride species due to the strong intermixing taking place at the interfaces, in such a way that a transition from metallic to insulator behaviour is observed in the UPS valence band. This transformation is accompanied by changes in the nitrogen concentration and a decrease of the Nb/Si or Ta/Al ratio in the thin mixed nitride films formed leading to the synthesis of custom designed group V transition metal-based mixed nitrides. Angle resolved XPS shows that the composition of the films formed by reactive IBM is rather uniform in the near-surface region. Experimental results have been compared with Monte Carlo TRIDYN simulations, suggesting that, in addition to pure ballistic mechanisms, radiation enhanced diffusion effects and the reaction with nitrogen should be also taken into account to explain the reactive IBM of Nb/Si and Ta/Al interfaces.  相似文献   

3.
The corrosion behavior of Mg–Y–Nd–Zr (WE43 commercial alloy) was investigated in Na2SO4 electrolyte using potentiodynamic polarization curves, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) depth profiles, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyzes. SEM and EDS data show that Nd-rich precipitates are mainly located at the grains boundaries. Zr/Y-rich zones are distributed inside the most of the grains. XPS study indicates a depletion of Mg on surface that could be attributed to Mg dissolution and an enrichment of the addition element oxides. XPS and ToF-SIMS analyzes demonstrate that the corrosion films are made up of a magnesium hydroxide (Mg(OH)2) outer layer and an inner layer containing magnesium oxide (MgO), yttrium oxide (Y2O3) and hydroxide (Y(OH)3), mixed with a small amount of MgH2, zirconium oxide (ZrO2) and neodymium oxide (Nd2O3). The Y2O3 and Y(OH)3 signals increase slightly in the inner layer towards the corrosion film/alloy interface. Unlike these compounds, ZrO2 and Nd2O3 compound signals are constant inside the inner layer. It is concluded that: (i) neodymium, zirconium and yttrium play a key role in the slightly improved corrosion resistance of the alloy and (ii) the cathodic reaction is slower on WE43 than on pure Mg and AZ91.  相似文献   

4.
Aluminium was laser clad on a pure zirconium substrate using the blown powder method. The microstructure across the laser-clad coating was studied. Starting from the bottom to the top surface of the coating, a series of phase evolutions had occurred: (Zr) → (Zr) + AlZr2 + AlZr3 → Al4Zr5 + Al3Zr2 → Al3Zr2 + AlZr2 → Al2Zr → Al2Zr + Al3Zr. This resulted in an epitaxial columnar crystal growth at the re-melt substrate boundary, a band of backward growth Al3Zr2 dendrites towards the lower half of the coating, and a two-phase eutectic dendritic growth of Al2Zr + Al3Zr towards the top of the coating. The evolution of the various phases and microstructures is discussed in conjunction with the Al-Zr phase diagram, the criteria for planar interface instability, and the theory of eutectic growth under rapid solidification conditions (the TMK model).  相似文献   

5.
In this work, the nano-scale tribological characteristics of PZT thin films (Pb(ZrxTi1 − x)O3: PZT) with various Zr/Ti ratios were investigated using an Atomic Force Microscope (AFM). The PZT thin films deposited by the sol-gel method were characterized by using an AFM, X-Ray Diffraction (XRD), and a nano-indentation technique. From the experimental results, the friction coefficient of the PZT thin film was found to be about 0.1-0.2 under a 0.1-10 μN normal force. It was determined that the wear rate of the PZT thin film was in the order of 10− 8 mm3/N·cycle. Also, it was observed that the crystalline structure of the PZT was amorphized due to mechanical stress.  相似文献   

6.
The semiconducting property of passive films of nitrogen-containing type 316LN stainless steels in different electrolytic media (0.5 M NaCl, borate buffer and borate buffer + 0.5 M NaCl) was investigated by electrochemical impedance spectroscopy (EIS). The nitrogen effect on the chemical composition of the passive films was investigated using X-ray photoelectron spectroscopy, (XPS). Based on capacitance results, the semiconducting parameters obtained from the Mott-Schottky plots indicated a decrease in the donor and acceptor density (ND and NA) with increase in nitrogen content, and variation in the flat band potential (EFB), depending on the electrolytic media. Thus indicating that the oxide layers of the passive film are modified by nitrogen addition. The presence of nitrogen and in the passive film was confirmed by the XPS analysis of the passive film. Cyclic polarization for pitting and repassivation corrosion studies indicated a decrease in hysteresis loop with increase in nitrogen content in 0.5 M NaCl solution. In the highest nitrogen-containing alloy (0.556 wt.% N), the hysteresis loop was small and negligible indicating that the pit initiation is minimum in this alloy. Based on the results obtained, an attempt was made to correlate the semiconducting nature of the passive films with pitting corrosion resistance.  相似文献   

7.
Amorphous boron carbon nitride (BCN) thin films were deposited on Si (100) and quartz substrates by laser ablation of a boron carbide (B4C) target in nitrogen atmosphere. The effects of the nitrogen pre ssure (pN2) on the film deposition rate, composition, structure and optical properties were investigated. The film deposition rate was measured by a surface profiler, which increased from 3.4 to 6.25 nm/min at elevated pN2. Structure and composition of the films were investigated by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy. FTIR and XPS analyses indicated that the as-deposited BCN films contained B-C, N-C and B-N chemical bonds, implying the formation of ternary BCN compounds. The nitrogen content in the films increased gradually and then saturated up to ∼ 26 at.% at 10 Pa pN2. The optical band gap (Eg) increased from 3.78 to 3.92 eV with increasing pN2 from 2 to 15 Pa. The evolution of Eg is in accordance with the change of film compositions and bonding states.  相似文献   

8.
Tungsten nitride (WNx) thin films were deposited on Si(100) substrates using direct current reactive magnetron sputtering in discharging a mixture of N2 and Ar gas. The effects of nitrogen flow rate (FN2) and substrate bias voltage (Vb) on the composition, phase structure, and mechanical properties for the obtained films were evaluated by means of X-ray photoelectron spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy and nanoindentation. The evolution of phase structure is found closely correlated to N concentration in the films. When Vb = −40 V, with increasing FN2, the N/W atomic ratio gradually increases in the film, accompanied by a phase transition from cubic β-W to hexagonal WN through face centered-cubic (fcc)-W2N. At FN2 = 15 sccm, the N/W atomic ratio gradually decreases with increasing the absolute value of Vb, resulting in a transition from fcc-W2N to cubic β-W(N) through a mixture of fcc-W2N + β-W(N). In addition, the increase in implanted nitrogen causes the increase in the compressive stress with increasing FN2. In contrast, although with increasing the absolute value of Vb from 80 to 160 V the N/W atomic ratio decreases, the increase of the defects caused by increasing ion bombarding energy, dominates the increase of the compressive stress. Furthermore, the maximum hardness value for the films arrives at 38.9 GPa, which is obtained at Vb = −120 V when fcc-W2N + β-W(N) mixed structure is formed.  相似文献   

9.
The effects of nitrogen ion implantation on corrosion behaviour of 304L stainless steel in 1 N HNO3 medium were investigated using surface analytical and electrochemical techniques. Nitrogen ion was implanted at 70 keV in the dose range of 1 × 1015, 1 × 1016, 1 × 1017 and 2.5 × 1017 N+/cm2, respectively. Grazing incidence X-ray diffraction results for unimplanted and up to dose of 1 × 1016 N+/cm2 showed co-existence of γ-Fe and α′-Fe and, at higher doses (1 × 1017 and 2.5 × 1017) preferential formation of chromium nitride was observed. X-ray photoelectron spectroscopy investigation confirmed the formation of chromium nitride at higher doses. Electrochemical corrosion investigation revealed nobler open circuit potential, decrease in corrosion current densities, passive current densities and increase in polarization resistance with increase in dose rate. Surface morphology analysis after polarization study using atomic force microscope showed grain boundary dissolution for unimplanted specimens and resistance to surface dissolution with increase in dose rate for implanted specimens.  相似文献   

10.
The paper discusses the effect of zirconium and chromium on the microstructure and properties of the aluminide layers produced on an Inconel 713C nickel superalloy substrate. The aluminizing process was conducted using the chemical vapor deposition (CVD) method in AlCl3 + ZrCl3 vapors and a hydrogen atmosphere as the carrier gas. This low-activity aluminizing process yielded a diffusive multi-component aluminide layer composed of three main zones: the outer zone, about 3 μm thick, chiefly built of AlNi2Zr, Ni3Zr and Al3Zr4, the intermediate zone, about 6 μm thick, containing the β-NiAl phase, and the inner zone, with a thickness of about 7 μm, mostly composed of the Cr2Al and β-NiAl grains. The substrate contained semi-coherent γ′-phases (Ni3Al) separated from the γ-austenite matrix by a dislocation net. DFT calculations have shown that Cr added to β-NiAl markedly increases the elastic constant C11 and the isotropic shear modulus G, whereas the addition of Zr decreases the C44 component. Moreover, zirconium added to β-NiAl increases its plasticity thanks to the formation of wide-spread metallic ZrNi bonds. It has been found that the Zr + Cr-modified aluminide layer formed on the Inconel 713C nickel superalloy improves its corrosion resistance (as measured in a 0.1 M Na2SO4 solution).  相似文献   

11.
用离子束溅射硼靶,在W6o5Cr4V2钢上宙积一层硼膜,再用反冲注入法注氮以形成氮化硼(BN),注入时采用逐次递减能量(即50kV,30keV,10keV0的多步骤注入。用XPS分析膜的成分深度分布及元素的化学价态;用傅立叶红外(FTIR)反射谱分析膜的结构,结果表明:膜基界面产生混合,与用单一能量注入相比,多步骤注入时,膜层的N/B分布比较均匀;硼在膜中以BN形式存在,膜深度较大处为a-BN或h-BN,并且随着深度的降低,膜有向c-BN转化的趋势。  相似文献   

12.
The phase equilibria of the Ti–Co–Zr ternary system at 773 K have been investigated mainly by powder X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive analysis (EDX). The isothermal section consists of 16 single-phase regions, 31 two-phase regions and 16 three-phase regions. There are 11 binary compounds, i.e. CoZr3, CoZr2, CoZr, Co2Zr, Co23Zr6, Co11Zr2, TiCo3, h-TiCo2, c-TiCo2, TiCo, Ti2Co in the system. The existence of two ternary compounds Co10Ti7Zr3 and Co66Ti17Zr17 has been confirmed at 773 K. Co2Zr, CoZr3 and TiCo have a range of homogeneity. The solubilities of Ti in CoZr was determined to be up to 8.1 at.% Ti.  相似文献   

13.
Nanocrystalline ZrNxOy thin films were deposited on p-type Si (100) substrates using hollow cathode discharge ion-plating (HCD-IP) and the films were annealed at 700 and 900 °C in the controlled atmosphere. The purpose of this study was to investigate the phase separation, phase transformation and the accompanying change of properties of the heat-treated ZrNxOy films deposited by ion plating. With the increase of oxygen flow rate ranging from 0 to 10 sccm, the primary phase of the as-deposited films evolved from ZrN to nearly amorphous structure and further to monoclinic ZrO2 (m-ZrO2). After heat treatment at 700 and 900 °C, phase transformation occurred in the samples deposited at 8 and 10 sccm O2, where a stoichiometric crystalline Zr2ON2 was found to derive from m-ZrO2 with dissolving nitrogen (m-ZrO2(N)). The hardness of the ZrNxOy thin films could be correlated to the fraction of Zr2ON2 + m-ZrO2. The film hardness decreased significantly as the fraction of ZrO+ Zr2ON2 exceeded ~ 60%, which was due to phase transition by increasing oxygen flow rate or phase transformation induced by heat treatment. The phase separation of m-ZrO2 from ZrN with dissolving oxygen (ZrN(O)) may relieve the residual stress of the ZrNxOy specimens deposited at 5 and 8 sccm O2, while direct formation of m-ZrO2 increased the stress of the film deposited at 10 sccm O2. On the other hand, the phase transformation from m-ZrO2(N) to Zr2ON2 by heat treatment at both 700 and 900 °C may effectively relieve the residual stress of the ZrNxOy films.  相似文献   

14.
Tantalum nitride and tantalum carbide films were fabricated using magnetron sputtering of tantalum followed by nitrogen and carbon plasma-based ion implantation (N-PBII and C-PBII). The phase evolution and morphology of the films were studied using glancing angle X-ray diffraction (GXRD) and transmission electron microscopy (TEM). It was found that the main phase in the tantalum nitride films was crystalline TaN0.1 whose grain size increases with increasing implantation voltage and phase content increases with increasing implantation dose. In the tantalum carbide film, the main phase was Ta2C. TaC phase also appeared as the implantation dose increased. XRD results from various glancing angles show that the phases with high nitrogen or carbon content, Ta4N5 and TaC, are present in the surface of the films. X-ray photoelectron spectra (XPS) from the tantalum carbide film reveal that the surface carbon content is higher than that of the inner film.  相似文献   

15.
Micrometer-sized γ−Ni dendrite reinforced nanoeutectic matrix composites have been developed in (Ni0.92Zr0.08)100–xAlx (0 ≤ x ≤ 4) by arc melting. The eutectic matrix is composed of alternate nano-lamellae of intermetallic Ni5Zr and fcc–Ni solid solution phases. All these composites exhibit very high strength, large compressive plasticity ∼25% and strain-hardening up to 1780 MPa. Al dissolves in γ−Ni(Zr) solid solution phase, decreases its hardness/strength, and increases the volume % of γ−Ni dendrite from 20% (x = 0) to 29% (x = 4). Whereas, refinement of the eutectic lamellae thickness from 275 nm (x = 0) to 160 nm (x = 4) increases the matrix hardness and retains the global strength of the composites. The effect of Al addition on the microstructure formation, volume fraction as well as the length scale of the constituent phases, and mechanical properties, have been discussed using an analytical model.  相似文献   

16.
The composition, microstructure and growth kinetics of the surface film formed on molten ZK60 magnesium alloy in 1,1,1,2-tetrafluoroethane/air mixture were investigated by using SEM, EDS, XRD, XPS and TG. The results show that the film formed in 0.01% 1,1,1,2-tetrafluoroethane/air was non-protective, and its phase composition changed with melt temperature. At 760 °C, the film was mainly composed of MgO and some MgF2 and ZrO2, whereas at 660 °C it consisted mainly of MgO and Mg3N2. The film formed in air containing 0.1% 1,1,1,2-tetrafluoroethane or higher was comprised of MgF2 and C with small amounts of MgO, and it was protective.  相似文献   

17.
Plasma based ion implantation of nitrogen was performed on mechanically polished UHMWPE model samples by applying 27.13 MHz RF energized low pressure N2 plasma with 15-30 kV pulses and fluences up to 5 · 1017 ions/cm2. Surface compositional and structural alterations and nanomechanical property changes were investigated by XPS, Raman and by nano-indentation and nano-scratch techniques. The implanted N amounted up to 13-20 at.% (N/C = 0.18-0.30), while a significant amount of oxygen could also be detected on the surface. Three types of chemical states of the incorporated nitrogen were detected, related to linear sp2 CN-C and to planar and non-planar sp3 type C-N bonds. The applied PBII treatment led to severe dehydrogenation of the polyethylene resulting in conversion of the surface into a nitrogen-containing DLC type structure. Up to four-fold increase of the hardness at 50-100 nm depth was measured compared to the untreated samples. The scratch volume, characterising the wear resistance, decreased also significantly down to 25-35% of the original value.  相似文献   

18.
Electrode grade graphite substrates were exposed in a nitrogen plasma produced in a pot type 35 kW dc extended arc furnace/reactor operating in non-transferred mode. Different gas (Ar, N2, H2) configurations were employed to nitride graphite for 15-20 min in the thermal plasma. Characterization of the plasma-nitrided graphite surface made by XRD revealed the presence of carbon nitride in a mixed form consisting of different phases. The 120-160 μm thick nitrided case exhibited enhanced microhardness values by more than 7 times. XPS studies confirmed the carbon and nitrogen bonding in the nitrided layer/case grown on surface. A comparison of morphologies between the un-nitrided and nitrided graphite surface showed a significant difference in the microstructure. Micro Raman spectra of the nitrided graphite surface showed further evidence of nitrogen incorporation and corroborate the XPS and SEM results. The new compound, carbon nitride, which was recently predicted from theoretical studies, is found to have been formed by the interaction between carbon (graphite) and nitrogen plasma due to a favourable free energy condition available in the high temperature plasma ambient.  相似文献   

19.
Corrosion resistance of glassy Ni55Co5Nb20Ti10Zr10 (at.%) alloy in 1 N HCl solution was investigated with respect to the electrochemical behavior and the compositions of the passive film and the underlying alloy surface just below the passive film. The potentiostatic polarization curve indicated that the alloy was spontaneously passivated with a low passive current density of the order of 10−3 A m−2. The quantitative X-ray photo-electron spectroscopy (XPS) analysis revealed that the thickness of the surface film increased linearly with an anodizing ratio of 1.5 nm V−1. The high corrosion resistance of the glassy alloy was due to the formation of niobium, titanium and zirconium-enriched passive film. The growth mechanism of the passive films is also discussed.  相似文献   

20.
The paper mainly investigated the protective property, structure and composition of the oxide film on Alloy 625 in a lithium borate buffer solution (pH300°C = 6.93) in the temperature range of 25–300 °C. The methods used were electrochemical measurements and XPS analysis. As temperature increased, the protective property of the oxide film degraded, and the structure varied from a singe-layer to double-layer. The oxide film consisted of Cr2O3 and Cr(OH)3 at 25 and 150 °C, while it contained Ni(OH)2, in addition to Cr2O3 and Cr(OH)3 at 250 and 300 °C. This was mainly attributed to the temperature-induced variation of composition and protective property of the barrier layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号