首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-adhesion LaPO4 coatings were fabricated on steel substrates at temperatures of 150-400 °C after a 10 min treatment using an ultrasonic-based coating process. The principle underlying this process is the collision of ultrasonically accelerated hard balls with the substrate surface that is covered by loosely adhered LaPO4 particles. The repeated substrate-to-ball collisions flatten the precoated LaPO4 particles, bond them together and cold weld them to the substrate. The coating thickness, roughness and structure were found to depend on the substrate temperature. The LaPO4 coatings produced at temperatures ranging from 150 to 250 °C exhibited a granular and porous structure. The treatment at temperatures higher than 300 °C enabled the production of rather dense coatings.  相似文献   

2.
Al2O3/LaPO4 composites of varying compositions were drilled on an ultrasonic machine with low carbon steel tools (solid and hollow), in order to evaluate the response to machining. Vickers hardness for different compositions indicate critical load dependency on LaPO4 content. Significance of LaPO4 content on material hardness highlights the critical content for good sinterability. X-ray diffraction was done to study the phase content. Acoustic emission (AE) signals emitted by the work piece during machining was also analyzed. Ultrascan inspection was carried out to check for any internal defects. The data presented in the paper illustrate the significance of LaPO4 addition on machinability of Al2O3/LaPO4 composites in terms of MRR, AE response and hole geometry and associated defects.  相似文献   

3.
Increasing demand for materials for severe working environment necessitates the use of ceramics. Fiber/whisker reinforcement in the structure can lead to certain defects such as debonding/delamination. Hence one can resort to particulate reinforcements. Of late attempts have been made to introduce dispersion strengthened/particulate reinforced ceramic composites. Addition of lanthanum phosphate (LaPO4) and cerium phosphate (CePO4) to alumina (Al2O3) matrix has been attempted. In this study Al2O3/LaPO4 composites containing different LaPO4 content have been assessed for the significance of LaPO4 content on structure-property and consequent machinability. Ultrasonic drilling trials have been carried out. The response of the material to the machining environment has been assessed by monitoring the acoustic emission (AE) from the composites and defects induced during machining.  相似文献   

4.
The LaPO4-Ba2P2O7-Ba(PO3)2 portion of the oxide La2O3-BaO-P2O5 system has been investigated. Important parts of this investigation were the determination of equilibria in the LaPO4-Ba(PO3)2 subsystem and the addition of liquidus data to the partially known LaPO4-Ba(PO3)2-Ba2P2O7 subsystem. These data were combined with known data from the LaPO4-Ba2P2O7 subsystem and with measurements of the equilibria within the LaPO4-Ba3P4O13 isopleth to determine the nature of the phase equilibria in the quasi-ternary LaPO4-Ba2P2O7-Ba(PO3)2 system.  相似文献   

5.
The LaPO4-Ba2P2O7-Ba(PO3)2 portion of the oxide La2O3-BaO-P2O5 system has been investigated. Important parts of this investigation were the determination of equilibria in the LaPO4-Ba(PO3)2 subsystem and the addition of liquidus data to the partially known LaPO4-Ba(PO3)2-Ba2P2O7 subsystem. These data were combined with known data from the LaPO4-Ba2P2O7 subsystem and with measurements of the equilibria within the LaPO4-Ba3P4O13 isopleth to determine the nature of the phase equilibria in the quasi-ternary LaPO4-Ba2P2O7-Ba(PO3)2 system.  相似文献   

6.
Monoclinic LaPO4 nanostructures with uniform rod shape have been successfully synthesized by a simple sol-gel method.The procedure involves formation of homogeneous,transparent,metal-citrate-EDTA gel precursors,followed by calcination to promote thermal decomposition of the gel precursors to yield the LaPO4 nanoparticles.Their morphologies and structures were characterized by XRD,TEM,TG-DSC and HRTEM.The results indicate that single monoclinic phase LaPO4 nanorods are readily obtained at 800 ℃ within 3 h.Furthermore,photoluminescence(PL) characterization of the Eu3+-doped LaPO4 nanocrystals was carried out.The effects of calcination temperatures and Eu3+ doping content on the PL properties were elaborated in detail.Room-temperature photoluminescence(PL) characterization reveals that the optical brightness as well as the intensity ratio of 5D0-7F1 to 5D0-7F2 is highly dependent on the calcination temperature,and the Eu0.05La0.95PO4 nanophosphor shows the relatively promising PL performance with the most intense emission.  相似文献   

7.
《Acta Materialia》2000,48(18-19):4471-4474
Interfaces of Al2O3 (sapphire) and LaPO4 (La-monazite) have been separated by fracture to reveal boundary grooving effects analogous to surface grooves that develop at high temperature on a polycrystalline body wherever a grain boundary intersects the surface. Atomic force microscope measurements are used to form images from matching sides of a separated interface and to compare groove profiles with the solution of Mullins.  相似文献   

8.
The LBS coating on the surface of spinel LiMn2O4 powder was carried out using the solid-state method, followed by heating at 425 °C for 5 h in air. The powder X-ray diffraction pattern of the LBS-coated spinel LiMn2O4 showed that the LBS coating medium was not incorporated in the spinel bulk structure. The SEM result showed that the LBS coating particles were homogeneously distributed on the surface of the LiMn2O4 powder particles. The effect of the lithium borosilicate (LBS) coating on the charge-discharge cycling performance of spinel powder (LiMn2O4) was studied in the range of 3.5-4.5 V at 1C. The electrochemical results showed that LBS-coated spinel exhibited a more stable cycle performance than bare spinel. The capacity retention of LBS-coated spinel was more than 93.3% after 70 cycles at room temperature, which was maintained at 71.6% after 70 cycles at 55 °C. The improvement of electrochemical performance may be attributed to suppression of Mn2+ dissolution into the electrolyte via the LBS glass layer.  相似文献   

9.
LaPO4:Ln3+ (Ln = Eu, Ce, Tb) nanocrystals were successfully synthesized via a facile solvothermal process in the presence of oleic acid. The as-prepared crystals were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), optical spectra as well as the kinetic decay times, respectively. In the synthesis process, oleic acid as a surfactant has played a crucial role in confining the growth and size of the LaPO4:Ln3+ phosphors. All the samples are well crystallized and assigned to the monoclinic monazite-type structure of the LaPO4 phase. The prepared LaPO4:Ln3+ phosphors present a narrow distribution with an average particle size of about 15 nm. Upon excitation by ultraviolet radiation, the LaPO4:Eu3+ phosphors show the characteristic 5D0-7F1-3 emission lines of Eu3+, while the LaPO4:Ce3+,Tb3+ exhibits the characteristic 5D0-7F3-6 emission lines of Tb3+. It is believed that these rare earth ion doped (Eu3+ ion or Ce3+ and Tb3+ ions co-doped) monoclinic monazite-type LaPO4 nanocrystals could find potential application as future advanced optical materials.  相似文献   

10.
High-temperature coating systems, consisting of a René N5 superalloy, a Ni–23Co–23Cr–19Al–0.2Y (at.%) bond coating (BC), and a yttria (7 wt%)-stabilized zirconia (YSZ) thermal barrier coating (TBC), were thermally cycled to failure for seven different controlled pre-oxidation treatments and one commonly employed industrial pre-oxidation treatment to establish the preferred microstructures of the thermally-grown oxide (TGO) on a NiCoCrAlY bond coating after pre-oxidation. It was found that the failure of the coating system occurred along the TGO/BC interface when the TGO attained a critical thickness, except if a NiAl2O4 spinel layer developed contiguous to the TBC/TGO interface. Then, the coating system failed at a smaller TGO thickness along the NiAl2O4/α-Al2O3 interface. The value for the TGO thickness at failure increased for a larger area fraction of Y-rich oxide pegs at the TGO/BC interface after pre-oxidation. A desired slow-growing oxide layer on the BC surface was promoted when the presence of the oxides NiAl2O4, θ-Al2O3, Y3Al5O12 at the TGO surface after pre-oxidation was avoided. The α-Al2O3 layer, which developed adjacent to the BC upon thermal cycling, grew at a low rate if the initial oxide at the onset of oxidation consisted of θ-Al2O3 instead of α-Al2O3. Based on these results a pre-oxidation treatment is proposed for which the lifetime of the entire coating system during service is enhanced.  相似文献   

11.
Ceramic coating was prepared on Q235 carbon steel by plasma electrolytic oxidation (PEO). The microstructure of the coating including phase composition, surface and cross-section morphology were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR) and scanning electron microscopy (SEM). The corrosion behavior of the coating was evaluated in 3.5% NaCl solution through electrochemical impedance spectra (EIS), potentiodynamic polarization and open-circuit potential (OCP) techniques. The bonding strength between Q235 carbon steel substrate and the ceramic coating was also tested. The results indicated that PEO coating is a composite coating composed of FeAl2O4 and Fe3O4. The coating surface is porous and the thickness is about 100 μm. The bonding strength of the coating is about 19 MPa. The corrosion tests showed that the corrosion resistance of Q235 carbon steel could be greatly improved with FeAl2O4-Fe3O4 composite coating on its surface.  相似文献   

12.
The surface of LiFePO4/C particles was coated with SiO2 via a sol-gel method, and the electrochemical performance of SiO2-coated LiFePO4 cathode materials at room temperature and 55 °C was investigated. Compared with pristine LiFePO4, the structure of LiFePO4 with SiO2 coating had no change, the existence of SiO2 coating effectively enhanced the cycling capacity, reduced capacity fading at high temperature and alleviated the cell impedance. The SiO2 coating played a regulatory role for Li-ion inserting the lattice, by increasing the order of lithium ion intercalating the outer lattice of the particle. As a consequence, capacity retention improves significantly.  相似文献   

13.
Reported are results of microstructure, mechanical and tribological properties studies for thin, amorphous hydrogenated carbon based coatings with tungsten content from 4.7 at.% up to 10.3 at.%. Studied coatings have been deposited by pulsed, reactive magnetron sputtering on substrates under planetary rotation. Resulting coatings, characterized by transmission electron microscopy (TEM) also at high resolution (HREM), show multilayer structure consisting of sub-layers of W-C:H type, with alternately high and low tungsten concentration. Thickness and number of sub-layers depend on rotation speed of planetary substrate holder. An average tungsten concentration decreases with increasing partial pressure of reactive gas (C2H2) during deposition. More insight into the microstructure of coatings provided HREM analysis showing crystalline precipitations of about 1-2 nm in size as well as tungsten-rich and tungsten-poor W-C:H sub-layers. Raman spectra confirm presence of amorphous, hydrogenated carbon (a-C:H) phase in the coatings. Microhardness of studied coatings depends on tungsten content and increases from 10.7 GPa to 13.7 GPa, for 5.1 at.% and 10.3 at.% of tungsten content, respectively. The highest cracking resistance and best adhesion (Lc2 = 78 N and HF1) has been achieved for coatings containing 4.9 at.% of tungsten and a sub-layer thickness of 5 nm. Tribological processes occurring in the coating-coating contact zone are dominated by graphitization and oxidation of W-C:H coating. Very low friction coefficient (0.04) and low wear rate seems to be an effect gaseous micro-bearing by tribo-generated carbon oxides and methane as well as hydrogen released from the coating. In the W-C:H-steel contact zone a tribo-layer composed of iron and tungsten oxides mixed with graphite-like products is growing at the surface of steel counterpart. This tribo-layer becomes a barrier restricting direct contact of steel with the coating and thus preventing it from further intense wear.  相似文献   

14.
The structure and adhesion of an alumina coating on a ceramic substrate with NiCrAlY alloy bond coating was investigated by heating at 1573 and 1673 K in the air. Phases of NiO, NiCrO3, NiAl2O4, αAl2O3, and Ni were revealed in a 100 μm thick bond coating on heating at 1573 and 1673 K. A veined structure was also detected in the coating heated at 1573 K. The adhesion strength of the coating was improved and reached approximately 20 MPa on heating at 1573 and 1673 K for 14.4 ks in air although the strength of the as-sprayed coating was only 2 MPa. The improvement of adhesion strength may arise from the formation of NiAl2O4 with a spinel structure at the interfaces of the top coating/bond coating/substrate coating system. The adhesion strength of the coating improved on decreasing the bond coating thickness and reached approximately 45 MPa for a 20 μm thick bond coating which was heated at 1673 K. Only NiAl2O4 oxide was formed in the bond coating.  相似文献   

15.
Z.B. Bao 《Corrosion Science》2009,51(4):860-751
A gradient NiCoCrAlYSiB coating was prepared on a Ni-base superalloy using arc ion plating (AIP) and subsequent gaseous phase aluminisation techniques. Hot corrosion of normal NiCoCrAlYSiB and the gradient coating in pure Na2SO4 and Na2SO4/NaCl (75:25, wt./wt.) salts was performed at 900 °C in static air. The corrosion results indicated an enhanced corrosion resistance to both salts for the gradient NiCoCrAlYSiB coating, which the improved performance of it should be attributed to the β aluminide ‘‘pool” at the surface layer. By partially sacrificing Al2O3 (i.e. Al), the gradient NiCoCrAlYSiB coating specimen behaved excellently in the two kinds of salts. The grain growth during the gaseous phase aluminisation and the corrosion mechanism, including the role NaCl played in the mixture salt corrosion, are discussed.  相似文献   

16.
An innovative phosphate–permanganate surface treatment (PPT) was developed to improve the static strength of adhesive-bonded 4 mm thick magnesium AZ31 sheets. The phosphate coating having the chemical composition of 1.43% P, 1.63% F and 0.15% Mn (in mass %) was formed after the treatment with PPT solution which has the formulation of KMnO4, K2HPO4, Na2SiO3 and NaF. The combination of additives NaF and Na2SiO3 and the pH values in the range of 5–6 for a phosphate–permanganate solution was found to be the key elements for the formation of the phosphate coating. The appearance of the phosphate coating and corrosion resistance to 3.5%NaCl solution was assessed. To study the durability of the coating, the effect of an exposure in a hot-humid environment (96% R.H. at 40 °C) on the static strength of adhesive-bonded magnesium AZ31 was investigated. Test results showed that the phosphate coating improved not only the static strength of bonded magnesium AZ31 joints in an ambient condition but also the durability in a hot-humid environment. These results suggest that PPT surface pretreatment is capable of improving the static strength and thermal durability of adhesive-bonded magnesium AZ31 sheets.  相似文献   

17.
The TiAl3-Al composite coating on orthorhombic Ti2AlNb based alloy was prepared by cold spray. Oxidation in air at 950 °C indicated that the bare alloy exhibited poor oxidation resistance due to the formation of TiO2/AlNbO4 mixture and intended to scale off at the TiO2 rich zone. A nitride layer about 2 µm was formed under the oxide layer. The oxygen invaded deeply into the alloy and caused severe microhardness enhancement in the near surface region. The TiAl3-Al composite coating exhibited parabolic oxidation kinetics and showed no sign of degradation after oxidized up to 1098 h at 950 °C in air under quasi-isothermal condition. No scaling of the coating was observed after oxidized at 950 °C up to the tested 150 cycles. The major oxide in the oxidized coating was Al2O3. The AlTi2N, TiAl and small amount of TiO2 were also observed in the oxidized coating. The EPMA and microhardness tests showed that inward oxygen diffusion was prevented by the interlayer, which was formed between the composite coating and the substrate during heat-treatment. Microstructure analyses demonstrated that the interlayer play a major role in protecting the substrate alloy from high temperature oxidation and interstitial embrittlement.  相似文献   

18.
Comparison of molybdenizing and NiCrAlY coating on Ti and Ti-6Al-4V   总被引:1,自引:0,他引:1  
Two surface treatments, molybdenizing and depositing NiCrAlY coating, were applied to improve the microhardness and the oxidation resistance of titanium and Ti-6Al-4V. Coupons were analyzed using optical microscopy (OM), scanning electron microscopy (SEM) with X-ray energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). Vickers hardness and isothermal oxidation tests were carried out to evaluate the effects of these two surface treatments on the microhardness and oxidation resistance of the substrates. The post vacuum heat treatment of the NiCrAlY coating and the molybdenizing parameters were also discussed. It is found that molybdenizing can obviously increase the surface hardness of titanium due to the formation of β, α″, and α′ phases in the diffusion layer. As γ′ phase is formed after vacuum heat treatment, the NiCrAlY coating is effective in improving the surface hardness of Ti-6Al-4V. The NiCrAlY coating can obviously decrease the oxidation rate of Ti-6Al-4V at 700–900°C, which can be attributed to the formation of Al2O3 and Cr2O3 mixed scale during the oxidation.  相似文献   

19.
A Ni-20Cr coating was deposited on a molybdenum substrate by laser cladding. The observation of the microstructure by SEM demonstrates that the coating is free of cracks and pores, and metallurgically bonded to the substrate. XRD and EDS analysis results show that some dilution occurs at the coating/substrate interface and that Mo combines with Ni-20Cr, to form a Ni-Cr-Mo alloy coating with slight oxidation. The oxidation behavior of the coating indicates that the laser clad Ni-20Cr coating can effectively prevent oxidation of molybdenum at 600 °C in air. The oxide scale formed on the coating surface by oxidation in air is composed of NiO, Cr2O3 and NiMoO4.  相似文献   

20.
A sample of LiMn2O4 spinel oxide was surface-modified with lithium lanthanum titanate ([Li,La]TiO3), which was developed as a lithium ionic conductor, by means of hydrothermal processing and subsequent heat treatment at 400 °C. The surface coating layers were analyzed by morphology observation using a transmission electron microscopy. Energy-dispersive spectrometry and X-ray photoelectron spectroscopy were used for element investigation. The surface modification effects on rate capability during cycling and capacity retention for the LiMn2O4 spinel oxide were confirmed. Then Mn dissolution during storage at elevated temperatures of the pristine, coated sample was characterized. The Mn dissolution characterization was based on the idea that Mn dissolution is one of the most significant reasons for capacity loss for LiMn2O4 spinel oxide, and this phenomenon is especially severe at elevated temperatures. Our experimental results indicate that the surface-modified sample shows much a better initial capacity and rate capability compared with the pristine sample. The [Li,La]TiO3 coating effectively enhances the structural stability of LiMn2O4 at elevated temperatures, most likely because the [Li,La]TiO3-modifying layers play a definitive role in suppressing Mn dissolution in the electrolyte during storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号