首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, corrosion behaviour of porous NiTi modified by plasma sprayed alumina coating has been investigated. Scanning electron microscopy and X-ray diffraction techniques were applied for the morphology and microstructure characterisation, while linear sweep voltammetry and electrochemical impedance spectroscopy were used for investigation of corrosion behaviour of coated and uncoated NiTi specimens. Induced couple plasma was conducted to measure ion release of the specimens in simulated body fluid at 37°C. The plasma sprayed Al2O3 coating on the porous NiTi improved the surface characteristics for biomedical applications. The alumina coating significantly hampered Ni ion release from the surface. In spite of slight decrease in corrosion resistance of the coated specimens, the corrosion mechanism changed from pitting to general corrosion. The breakdown phenomenon was not detected in the coated specimens, as well. Overall, it can be concluded the longevity of the coated specimen in the simulated biological system was enhanced, comparing to bare NiTi specimens.  相似文献   

2.
3.
This work is related to the manufacturing and tribological testing of plasma sprayed cermet coatings of chromium oxide and stainless steel in order to obtain wear resistant coatings to dry and slurry abrasion. Raw materials were fused and crushed powders of chromium oxide (Cr2O3) with a particle size ranging from 20 to 45 μm and gas atomized stainless steel (iron base with 17 wt.% of Cr and 12 wt.% of Ni) with a particle size distribution between 20 and 53 μm. Both powders were simultaneously injected with two separated injectors in a direct current (DC) plasma jet (Ar-H2 (25 vol.%) at atmospheric pressure (APS).The influence, on the coating micro-structural and tribological properties, of various stainless steel weight percentages in chromium oxide has been studied. All coatings exhibited a lamellar structure with a random distribution of the two materials. The effect of the percentage of stainless steel on the microstructure of the coating, studied by scanning electron microscopy (SEM), has shown that increasing the stainless steel percentage increased the coating cohesion. The increase of Cr2O3 in the coatings resulted in higher hardness and in lower weight losses during wear tests in dry abrasion. The study has also shown that the optimum stainless steel percentages in coatings were not identical to reach their maximum resistance to slurry or dry abrasion.  相似文献   

4.
The starting materials of Al2O3, TiO2, ZrO2 and CeO2 nanoparticles were agglomerated into sprayable feedstock powders and plasma sprayed to form nanostructured coatings. There were net structures and fused structures in plasma sprayed nanostructured Al2O3–13 wt.%TiO2 coatings. The net structures were derived from partially melted feedstock powders and the fused structures were derived from fully melted feedstock powders. The nanostructured Al2O3–13 wt.%TiO2 coatings possessed higher hardness, bonding strength and crack growth resistance than conventional Metco 130 coatings which were mainly composed of lamellar fused structures. The higher toughness and strength of nanostructured Al2O3–13 wt.%TiO2 coatings were mainly related to the obtained net structures.  相似文献   

5.
Air plasma sprayed TBCs usually include lamellar structure with high interconnected porosities which transfer oxygen from YSZ layer towards bond coat and cause TGO growth and internal oxidation of bond coat.The growth of thermally grown oxide (TGO) at the interface of bond coat and ceramic layer and internal oxidation of bond coat are considered as the main destructive factors in thermal barrier coatings.Oxidation phenomena of two types of plasma sprayed TBC were evaluated: (a) usual YSZ (yttria stabilized zirconia), (b) layer composite of (YSZ/Al2O3) which Al2O3 is as a top coat over YSZ coating. Oxidation tests were carried out on these coatings at 1100°C for 22, 42 and 100h. Microstructure studies by SEM demonstrated the growth of TGO underneath usual YSZ coating is higher than for YSZ/Al2O3 coating. Also cracking was observed in usual YSZ coating at the YSZ/bond coat interface. In addition severe internal oxidation of the bond coat occurred for usual YSZ coating and micro-XRD analysis revealed the formation of the oxides such as NiCr2O4, NiCrO3 and NiCrO4 which are accompanied with rapid volume increase, but internal oxidation of the bond coat for YSZ/Al2O3 coating was lower and the mentioned oxides were not detected.  相似文献   

6.
Al2O3, Al2O3-Cr2O3 and Cr2O3 coatings were deposited by atmospheric plasma spraying. Phase composition of powders and as-sprayed coatings was determined by X-ray diffraction. Electron probe microanalyzer was employed to investigate the polished and fractured surface morphologies of the coatings. Mechanical properties including microhardness, fracture toughness and bending strength were evaluated. The results indicate that the addition of Cr2O3 is conducive to the stabilization of α-Al2O3. Compared with the pure Al2O3 and Cr2O3 coatings, Al2O3-Cr2O3 composite coatings show lower porosities and denser structures. Heterogeneous nucleation of α-Al2O3 occurs over the isostructural Cr2O3 lamellae and partial solid solution of Al2O3 and Cr2O3 might be occurring as well. Furthermore, grain refining and solid solution strengthening facilitate the mechanical property enhancement of Al2O3-Cr2O3 composite coatings.  相似文献   

7.
Nanostructured titania (TiO2) coatings were produced by high-velocity oxyfuel (HVOF) spraying. They were engineered as a possible candidate to replace hydroxyapatite (HA) coatings produced by thermal spray on implants. The HVOF sprayed nanostructured titania coatings exhibited mechanical properties, such as hardness and bond strength, much superior to those of HA thermal spray coatings. In addition to these characteristics, the surface of the nanostructured coatings exhibited regions with nanotextured features originating from the semimolten nanostructured feedstock particles. It is hypothesized that these regions may enhance osteoblast adhesion on the coating by creating a better interaction with adhesion proteins, such as fibronectin, which exhibit dimensions in the order of nanometers. Preliminary osteoblast cell culture demonstrated that this type of HVOF sprayed nanostructured titania coating supported osteoblast cell growth and did not negatively affect cell viability. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

8.
针对纯陶瓷涂层由于结合强度低、孔隙率高、影响涂层耐磨性的实际,用等离子喷涂法制备了Cu-Al2O3梯度涂层,用电子扫描显微镜(SEM)、金相显微镜等手段对涂层进行微观组织和成分分析,用自制销盘式固定磨料磨损试验机,检测了Cu-Al2O3梯度涂层的耐磨料磨损性能.结果表明,采用等离子喷涂法制备的Cu-Al2O3梯度涂层无明显的组织突变和宏观层间界面,涂层的组织表现出宏观不均匀性和微观连续性分布特征;梯度涂层中当Al2O3含量(质量分数,%)达到80%时(GC6),涂层的耐磨性最高,约为基体的3倍,随着Al2O3含量继续增大,纯陶瓷涂层(GC7)的耐磨性有所下降.  相似文献   

9.
The influence of nucleation on the microstructure and properties of CVD Al2O3 was investigated. The experimental α-Al2O3 layers were deposited (a) without nucleation control and (b) with nucleation steps resulting in pronounced , and growth textures. The experimental layers were characterised using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Wear properties of the textured coatings were evaluated in turning. The chemistry of the nucleation surface appeared to be an important factor in pre-determining the phase content and growth textures of the Al2O3 layers. Optimised nucleation resulted in substantially improved wear properties and these kinds of α-Al2O3 layers were typically composed of relatively small, defect-free grains exhibiting no porosity. The textured α-Al2O3 layer showed the best wear resistance.  相似文献   

10.
The thermal shock behavior of three kinds of Al2O3/13 wt%TiO2 coatings fabricated by plasma spraying was studied in this paper. One kind of those coatings was derived from conventional fused and crushed feedstock powder available commercially; the other two kinds of coatings were derived from nanostructured agglomerated feedstock powders. These two nano coatings possess moderate pores and pre-existing microcracks, they were composed of fused structure and three-dimensional net or skeleton-like structure. For conventional coatings, the pores and pre-existing cracks were bigger, sharp-point and mostly distributed between splats. Thermal shock tests for the three coatings were performed by water quenching method. Testing result showed the two kinds of nano coatings had much higher thermal shock resistance than the conventional coatings. The improved thermal shock resistance for nano coatings could attribute to their improved microstructure and crack propagation mode. The damage evolution and failure mechanism of coatings was quite different at thermal shock temperature of 650 °C and 850 °C, which was explained by a simple model. Different crack propagating modes in nanostructured and conventional coatings during thermal shock tests were due to their different microstructures in these two kinds coatings. The stress state of coating surfaces during the thermal cycles was also discussed in this paper.  相似文献   

11.
The fracture toughness of plasma-sprayed Al2O3 coatings in terms of critical strain energy release rate G Ic was investigated using a tapered double cantilever beam (TDCB) approach. This approach makes the fracture toughness be measured only using the critical fracture load disregarding crack length during test. The Al2O3 coatings were deposited under different spray distances and plasma powers to clarify the effect of spray parameters on the G Ic of the coatings. The fracture surfaces were examined using scanning electron microscope. On the basis of an idealized layer microstructure model for thermal sprayed coatings, the theoretical relationship between the cohesive fracture toughness and microstructure is proposed. The correlation between the calculated fracture toughness and observed value is examined. It was found that the fracture toughness of plasma sprayed Al2O3 coatings is not significantly influenced by spray distance up to 110 mm, and further increase in spray distance to 130 mm resulted in large decrease in the fracture toughness of the coatings. The G Ic value predicted based on the proposed model using lamellar interface mean bonding ratio and the effective surface energy of bulk ceramics agreed well with the observed G Ic data. Such agreement evidently shows that the fracture toughness of thermally sprayed ceramic coatings at the direction along coating surface is determined by lamellar interface bonding.  相似文献   

12.
Effects of plasma spraying conditions on wear resistance of nanostructured Al2O3-8 wt.%TiO2 coatings plasma-sprayed with nanopowders were investigated in this study. Five kinds of nanostructured coatings were plasma-sprayed on a low-carbon steel substrate by varying critical plasma spray parameter (CPSP) and spray distance. The coatings consisted of fully melted region of γ-Al2O3 and partially melted region, and the fraction of the partially melted regions and pores decreased with increasing CPSP or decreasing spray distance. The hardness and wear test results revealed that the hardness of the coatings increased with increasing CPSP or decreasing spray distance, and that the hardness increase generally led to the increase in wear resistance, although the hardness and wear resistance were not correlated in the coating fabricated with the low CPSP. The main wear mechanism was a delamination one in the coatings, but an abrasive wear mode also appeared in the coating fabricated with the low CPSP. According to these wear mechanisms, the improvement of wear resistance in the coating fabricated with the low CPSP could be explained because the improved resistance to fracture due to the presence of partially melted regions might compensate a deleterious effect of the hardness decrease.  相似文献   

13.
Mechanical properties and wear rates of Al2O3-13 wt.% TiO2 (AT-13) and Al2O3-43 wt.% TiO2 (AT-43) coatings obtained by flame and atmospheric plasma spraying were studied. The feed stock was either ceramic cords or powders. Results show that the wear resistance of AT-13 coatings is higher than that of AT-43 and it seems that the effect of hardness on wear resistance is more important than that of toughness. Additionally, it was established that, according to conditions used to elaborate coatings and the sliding tribological test chosen, spray processes do not seem to have an important effect on the wear resistance of these coatings.  相似文献   

14.
The objective of the present study was to evaluate the tribological performance of 200 μm thick TiMo(CN)–28Co and TiMo(CN)–36NiCo coatings obtained using the detonation spray coating system. Towards the above purpose, the detonation spray coating conditions were optimized to obtain the best coating properties (low porosity, high wear resistance) by varying two of the important coating process variables, i.e., oxygen to fuel ratio and gas volume. In both the coatings it was observed that the best tribological performance and also the lowest porosity were obtained at intermediate OF ratios. However, the coatings with the highest hardness did not exhibit the best tribological performance. A comparison of the tribological performance of the optimized TiMo(CN) type coatings with that of optimized WC–Co coatings revealed that the abrasion resistance of TiMo(CN) type coatings is comparable to that of WC–Co coatings. However, the erosion and sliding wear resistance of TiMo(CN) type coatings were considerably lower than that of WC–Co coatings.  相似文献   

15.
The structure, hardness, and shear adhesion strength have been investigated for Cr3C2-NiCr cermet coatings sprayed onto a mild steel substrate by 200 kW high power plasma spraying (HPS) and high velocity oxy-fuel (HVOF) processes. Amorphous and supersaturated nickel phases form in both as-sprayed coatings. The hardness of the HVOF coating is higher than that of the HPS coating, because the HVOF coating contains more nonmelted Cr3C2 carbide particles. On heat treating at 873 K, the amorphous phase decomposes and the supersaturated nickel phase precipitates Cr3C2 carbides so that the hardness increases in the HPS coating. The hardness measured under a great load exhibits lower values compared with that measured with a small load because of cracks generated from the indentation. The ratio of the hardnesses measured with different loads can be regarded as an index indicating the coating ductility. The ductility of the HVOF coating is higher than that of the HPS coating. Adhesion strength of the HVOF coating was high compared with the HPS coating. The adhesion of the coatings is enhanced by heat treating at 1073 K, and that of the HVOF coating is over 350 MPa.  相似文献   

16.
Alumina matrix composites containing 5 and 10 wt% of ZrO2 were sintered under 100 MPa pressure by spark plasma sintering process. Alumina powder with an average particle size of 600 nm and yttria-stabilized zirconia with 16 at% of Y2O3 and with a particle size of 40 nm were used as starting materials. The influence of ZrO2 content and sintering temperature on microstructures and mechanical properties of the composites were investigated. All samples could be fully densified at a temperature lower than 1400 °C. The microstructure analysis indicated that the alumina grains had no significant growth (alumina size controlled in submicron level 0.66-0.79 μm), indicating that the zirconia particles provided a hindering effect on the grain growth of alumina. Vickers hardness and fracture toughness of composites increased with increasing ZrO2 content, and the samples containing 10 wt% of ZrO2 had the highest Vickers hardness of 18 GPa (5 kg load) and fracture toughness of 5.1 MPa m1/2.  相似文献   

17.
In this work, 6061 series aluminum alloy is used as the matrix material for its wide application in engineering to make AlON coating layers by the electrolytic plasma processing (EPP) method. The experimental electrolytes include: 10 g/L NaAlO2 as alumina formative agent, 2 g/L NaOH as the electrolytic conductive agent, 0.4 g/L NaNO3 as a nitride supply agent. A combined composition and structure analysis of the coating layer was carried out by X-ray diffractometer (XRD) and scanning electron microscopy (SEM) for the specimens EPP-treated at 25 °C in 5 to 30 min under a hybrid voltage of 260 V DC plus AC 50 Hz power supplies (200 V). In addition, microhardness values were measured to correlate the evolution of microstructure and resulting mechanical properties. A composite of AlON-Al2O3 coating was formed as a result of a reactive process between Al in the alloy itself and O-N supplied by the electrolyte, which presents high hardness and anti-abrasion behaviors.  相似文献   

18.
Mo-S-C self-lubricating coatings were deposited by d.c. magnetron sputtering from carbon and molybdenum disulphide targets. The power ratio of the targets was varied in order to prepare films with carbon content in the range 0-55 at.%. Whatever the carbon content, the S/Mo ratio was higher than 1.25. The hardness of the films increased almost linearly with the carbon content. X-ray photoelectron spectroscopy showed evidence of Mo-C bonds; nevertheless, the size of molybdenum carbide grains was expected to be very small, since X-ray diffraction did not reveal any peaks related to any Mo-C phase. The coatings tested by pin-on-disc exhibited low friction, decreasing with increasing carbon content, when humid air was present. In nitrogen, the friction of all films was lower than 0.02 except for the reference MoS2 (0.04). Mo-S-C outperformed the wear resistance of MoS2; on the other hand, the results were in some cases hindered by the low adhesion of the coatings. The films were very sensitive to air exposure leading to surface oxidation.  相似文献   

19.
The biomedical NiTi alloy was treated by micro-arc oxidation in an electrolytes containing sodium aluminate and sodium hypophosphite at 400 V constant voltages for 30 min. The MAO-treated NiTi has a porous microstructure on its surface and coatings consisting only of the γ-Al2O3 phase. The ceramic coating prepared by micro-arc oxidation is composed of Al, Ti, Ni, O, and P with the atomic concentration of 26.98%, 3.67%, 3.33%, 65.30% and 0.72%, respectively. The MAO-treated NiTi was soaked in a simulated body fluid (1.0SBF) to investigate the biomimetic deposition of apatite on the surface of Al2O3 coated NiTi alloy. It was found that Al2O3 coated NiTi alloy shows an excellent apatite-forming ability after soaking in a simulated body fluid (1.0SBF) for 14 days, while no apatite-forming ability was observed on bared NiTi alloy even though soaking time is up to 28 days.  相似文献   

20.
采用AgCuTi钎料对Al2O3陶瓷与GH99高温合金进行了钎焊连接,研究了工艺参数(连接温度、保温时间)的变化对接头力学性能的影响,并分析了不同参数下接头的断裂位置,结果表明:保温5min时,在不同的连接温度下进行钎焊,随着连接温度的升高,接头的抗剪强度先增后减,在900℃时取得最大值,为127.24MPa,连接温度较低时,主要断裂于Al2O3/钎料侧,随着温度的升高,接头TiNi3反应层增厚,因此还有部分断裂于TiNi3反应层/钎料界面;在连接温度为900℃时,随着保温时间的延长,接头的抗剪强度逐渐降低,保温时间较短时,主要要断裂于Al2O3/钎料界面,保温时间过长,TiNi3反应层延伸入钎料中部且厚度大大增加,在该反应层中产生微裂纹,造成接头强度大大降低,此时部分断裂于钎料中部及TiNi3反应层中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号