共查询到19条相似文献,搜索用时 78 毫秒
1.
三相电压型PWM整流器的直接功率控制系统中,传统PI调节器很难抑制由负载变化或扰动引起直流电压的波动。而自抗扰控制对负载的变化和扰动可以准确地估计和补偿,从而有效抑制负载变化带来的影响,现采用ADRC进行电压外环控制构成控制系统。仿真结果表明:对于整流器的直接功率控制系统,基于ADRC的整流器的控制系统具有较强的鲁棒性和抗负载变化能力,其动态性能指标明显优于传统PID控制。 相似文献
2.
单相脉宽调制(PWM)整流器作为车载充电机交直流变换的重要模块,在传统无差拍预测电流控制(DPCC)时存在的参数不匹配、控制时延等诸多问题。此处提出一种自抗扰控制器预测电流控制(ADRC-PCC)方法。在电压回路中,设计ADRC降低二倍频功率波动及电网谐波影响,提高系统动态响应能力。在电流回路中,通过二阶广义积分锁相环(SOGI-PLL)预测k+1时刻电网电压,进而构建逐步逼近调节电网电压补偿系数,减少参数失配和控制延迟影响,提高系统稳定性。最后,依托2 kW单相PWM整流器测试平台对所提ADRC-PCC方法进行测试,实验结果表明,该方法可在负载突变、容性补偿等多模式下实现单相PWM整流器高性能调节,与传统DPCC方法相比动稳态特征和鲁棒性更优。 相似文献
3.
为改善单相两电平PWM整流器的动态性能,本文在传统外环采用PI控制,内环采用功率前馈解耦直接功率控制的双闭环控制方法基础上,提出一种改进控制策略,即引入基于线性自抗扰(LADRC)的电压外环,以减小直流侧电压的超调量,提高系统的响应速度,并增强其抗负载扰动能力。进一步在功率前馈解耦控制的基础上,引入二阶广义积分(SOGI)构建虚拟正交分量,以提高网侧电流对电压的追踪能力,提升系统的动态性能。最后,通过MATLAB/Simulink建立系统仿真模型并进行仿真,对所提出改进控制策略的可行性和有效性进行了验证。 相似文献
4.
对于复杂多工况切换的脉冲负载问题,传统不控或PID全控整流变换系统均无法解决输出电压响应和交流侧电流谐波间的技术指标矛盾,为此提出一种根据工况变化自适应调节的控制方法。首先分析脉冲负载多工况切换条件下电压稳定速度和三相电流谐波与控制器参数的关系,得到两技术指标间矛盾机理。基于三相PWM整流器的数学模型构建线性自抗扰控制器,确定其基本参数。根据LADRC等效截止频率和交流侧电流谐波与控制器参数的关系,设计等效带宽参数的4自由度更新算法,根据工况变化实现自适应参数调节。仿真和实验结果表明,提出的自适应线性自抗扰控制器能够提高脉冲负载整流器在负载工况切换时的电压动态响应速度,同时降低稳定工况下的交流侧三相电流谐波,实现两指标间的自适应协调。 相似文献
5.
针对车载双重化脉宽调制(pulse width modulation,PWM)整流器控制性能易受到模型不确定性和列车运行条件(输入电压、功率等级、电路参数等)变化影响的问题,提出一种基于自抗扰控制(active disturbance rejection control,ADRC)和模型预测直接功率控制(model predictive direct power control,MPDPC)的双闭环控制算法。其中,外环基于自抗扰控制理论,构建了基于误差驱动的ADRC(error-based ADRC,EADRC)控制器调节直流侧电压;内环结合基于内模原理的功率补偿方案使用两步MPDPC算法实现电流信号的控制。仿真和实验将所提自抗扰模型预测直接功率控制(ADRC-MPDPC)算法与传统基于比例积分的直接功率控制(proportional integral-based direct power control,PI-DPC)算法和PI-MPDPC方法进行对比,结果表明所提策略在系统启动、负载变化及工况切换等场景表现出更优的动态特性和鲁棒性能。 相似文献
6.
7.
8.
不对称电压下PWM整流器的变结构自抗扰控制 总被引:1,自引:0,他引:1
为抑制PWM整流器在不对称电网电压时的谐波功率以及负载扰动对直流侧电压的影响,提出了一种基于变结构自抗扰理论的新型电压控制方法。将自抗扰控制与变结构控制器相结合,设计了变结构自抗扰控制器。正负序电流环采用变结构自抗扰控制,以此来消除电流环的耦合对系统的扰动,并消除功率传输中的谐波分量。新型控制器在保持原自抗扰控制器特点的同时减少了可调参数,使得参数整定变得容易,改善了系统控制性能。仿真以及实验结果表明,此方法能够对输出电压快速并无超调的进行控制,并能有效抑制传输中谐波功率和负载变化对系统的影响。 相似文献
9.
10.
高速磁悬浮列车采用长定子直线同步电机驱动,在运行过程中采用分段供电的方式,当磁悬浮列车从一个定子段过渡到另一个定子段时,列车一侧的定子会经历电流降为零再增大的换步过程.对于高速磁悬浮系统中三相PWM整流器而言,负载在换步过程中变化剧烈,对直流侧输出电压产生了严重的影响.为了抑制负载扰动对直流侧电压的影响,提出一种结合自抗扰和负载功率前馈的电压、电流双闭环控制策略.通过硬件在环实验验证了该策略对负载变化具有较强的鲁棒性,降低了定子段换步过程中的直流母线电压波动,提高了PWM整流器的抗负载扰动能力和系统动态性能. 相似文献
11.
12.
针对电力电子变压器的非线性特性,传统PI控制的单相电力电子变压器整流级具有对参数变化敏感,响应速度慢,抗扰性能差的特点。提出了一种基于线性自抗扰控制(line active disturbance rejection control, LADRC)的电压环控制策略,该控制策略具有响应速度快、超调量小、鲁棒性强的特点。在仿真软件MATLAB/Simulink中通过搭建三级联H桥整流器模型进行仿真,并与传统PI控制器相比较,仿真结果表明所采用控制策略的优越性、有效性。 相似文献
13.
在线性自抗扰控制技术基础上,引入解耦补偿器,提出汽包锅炉单元机组协调系统的新控制方案。该方案首先对单元机组设计解耦补偿器,进行一定程度解耦;再将其他通道耦合作为扰动,分别设计炉侧和机侧线性自抗扰控制器,进一步消除耦合的影响。由于线性自抗扰控制技术采用扩张状态观测器,可以对扩张状态(系统未建模动态摄动和未知扰动1进行在线实时估计,因此其设计的扰动补偿可以不依赖于模型达到快速消去扰动的效果。将该方法应用于一500MW汽包锅炉单元机组协调系统进行仿真研究,结果表明该方案可以实现良好的动静态解耦,有较强的鲁棒性和抗干扰能力,并且算法简单、调试容易。 相似文献
14.
针对永磁同步电机(PMSM)高频注入无感算法在估算电机角度时容易产生滞后而影响转速控制精度的问题,提出了一种基于线性自抗扰控制的永磁同步电机无传感器控制策略。通过使用简化的线性自抗扰控制算法,对永磁同步电机速度闭环进行优化控制,同时采用高频正弦电压注入的无传感器角度观测算法,获取电机转子的角度及转速信息。最后,通过仿真分析与实物试验,验证了该控制策略可以有效提高永磁同步电机转子角度与转速的估算精度,提升系统的控制效果,且具有较好的工程应用前景。 相似文献
15.
16.
17.
18.