首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The corrosion behaviour of aluminium/silicon carbide (Al/SiC) composite coatings deposited by thermal spray on AZ31, AZ80 and AZ91D magnesium-aluminium alloys was investigated by electrochemical and gravimetric measurements in 3.5 wt.% NaCl solution at 22 °C. Corrosion products were examined by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis and low-angle X-ray diffraction (XRD). Al/SiC composite coatings in the as-sprayed state revealed high level of porosity with poor bonding at the Al/SiC and coating/substrate interfaces, which facilitated degradation of the magnesium substrates by a mechanism of galvanic corrosion. Cold-pressing post-treatment produced more compact coatings with improved corrosion performance in 3.5 wt.% NaCl compared with as-sprayed coatings.  相似文献   

2.
The corrosion resistance of AZ31, AZ80 and AZ91D Mg–Al alloys with Al–11Si thermal spray coatings was evaluated by electrochemical and gravimetric measurements in 3.5 wt% NaCl solution. The changes in the morphology and corrosion behaviour of the Al–11Si coatings induced by a cold‐pressing post‐treatment under 32 MPa were also examined. The as‐sprayed Al–11Si coatings revealed high degree of porosity and poor corrosion protection, which resulted in galvanic acceleration of the corrosion of the magnesium substrates. The application of a cold‐pressing post‐treatment produced more compact Al–11Si coatings with better bonding at the substrate/coating interface and slightly higher corrosion resistance. However, interconnected pores remained in the cold‐pressed coatings due to the low plasticity of the Al–11Si powder and galvanic corrosion of the substrate was observed after immersion in 3.5 wt% NaCl for 10 days.  相似文献   

3.
The corrosion protection of Mg–Al alloys by flame thermal spraying of Al/SiC particles (SiCp) composite coatings was evaluated by electrochemical impedance spectroscopy in 3.5 wt.% NaCl solution. The volume fraction of SiCp varied between 5 and 30%. The as-sprayed Al/SiCp composite coatings revealed a high number of microchannels, largely in the vicinity of the SiCp, that facilitated the penetration of the electrolyte and the subsequent galvanic corrosion of the magnesium substrates. The application of a cold-pressing post-treatment reduced the degree of porosity of the coatings and improved the bonding at the coating/substrate and Al/SiC interfaces. This resulted in improved corrosion resistance of the coated specimens. The effectiveness of the coatings slightly decreased with the addition of 5–30 vol.% SiCp compared with the unreinforced thermal spray aluminium coatings.  相似文献   

4.
Diamond-like carbon coating (DLC) was deposited on AZ31 magnesium alloy by ion beam deposition technique in this study. A columnar Cr layer with a (110) preferred texture and a columnar CrN layer with a (111) preferred texture were applied as interlayers in the DLC coating/AZ31 substrate systems. The addition of these interlayers improved the adhesion between coating and substrate effectively, but did not enhance the corrosion resistance of the DLC/AZ31 systems due to the formation of galvanic cell between substrate and interlayer in the region of through-thickness defects in 3.5 wt.% NaCl solution. In addition, the effect of bias voltage on the corrosion resistance of CrN/Cr coatings on magnesium alloys was investigated. Although the application of bias voltage induced the coating denser, it was still difficult for CrN/Cr coating to reduce the corrosion current density of AZ31 due to the large difference between coating and substrate in galvanic series.  相似文献   

5.
Thermally sprayed Al and Al/SiCp composite coatings have been deposited on ZE41 magnesium alloy and mechanical compaction at room temperature was applied to the Al and Al/SiCp coatings to reduce their porosity. Corrosion behaviour of coated samples was evaluated and compared to that of uncoated substrate in 3.5 wt.% NaCl solution using electrochemical measurements. Al and Al/SiCp composite coatings reduced the corrosion current density of Mg-Zn alloys by three and two orders of magnitude, respectively, and reductions up to four orders of magnitude were obtained after mechanical compaction.  相似文献   

6.
The corrosion effects on the tensile and stress relaxation behavior of an extruded AZ31 magnesium alloy subjected to immersion and salt-spray environments have been investigated. Specimens were simultaneously corroded and stress relaxed in a 3.5 wt.% NaCl solution and then put under a tensile test to failure to determine the stress–strain response over a 60 h test matrix. The AZ31 magnesium alloy shows an evident relaxation in 3.5 wt.% NaCl at room temperature. According to optical and scanning electron microscopy investigations, the fracture surfaces for the immersion environment show a high sensitivity to stress corrosion cracking.  相似文献   

7.
用电化学方法和腐蚀失重法研究了 2024Al和SiCp/2024Al复合材料在 3.5%NaCl水溶液中的耐蚀性,用电化学阻 抗技术对它们的硫酸阳极氧化膜保护性进行了跟踪评价.结果表明SiCp/2024Al在 3.5%NaCl水溶液中比 2024Al有较大的 腐蚀敏感性.2024Al表面的阳极氧化膜,经热水封闭后,可提供相当好的保护作用.热水封闭的Sip/2024Al阳极氧化膜, 具有良好的耐 NaCl溶液腐蚀能力,由于氧化膜中SiC颗粒的存在破坏了氧化膜的完整性和均匀性,故其耐蚀性不如 2024 Al 合金的阳极氧化膜.  相似文献   

8.
A chemical conversion treatment and an electroless nickel plating were applied to AZ91D alloy to improve its corrosion resistance. By conversion treatment in alkaline stannate solution, the corrosion resistance of the alloy was improved to some extent as verified by immersion test and potentiodynamic polarization test in 3.5 wt.% NaCl solution at pH 7.0. X-ray diffraction patterns of the stannate treated AZ91D alloy showed the presence of MgSnO3 · H2O, and SEM images indicated a porous structure, which provided advantage for the adsorption during sensitisation treatment prior to electroless nickel plating. A nickel coating with high phosphorus content was successfully deposited on the chemical conversion coating pre-applied to AZ91D alloy. The presence of the conversion coating between the nickel coating and the substrate reduced the potential difference between them and enhanced the corrosion resistance of the alloy. An obvious passivation occurred for the nickel coating during anodic polarization in 3.5 wt.% NaCl solution.  相似文献   

9.
Hydroxyapatite (HAp) coatings were formed directly on AZ31 magnesium alloy and pure Mg in a 250 mmol/L C10H12N2O8Na2Ca aqueous solution of pH 8.9. Treatment time was varied from 2 h to 6 h. Crystal phase, morphology and composition of the coatings were investigated. Immersion and polarization tests in a 3.5 wt.% NaCl solution were performed to examine the corrosion behavior of the HAp-coated specimens. The HAp coating of AZ31 with short treatment time had defects which decreased with an increase in treatment time. The HAp coatings of AZ31 consisted of an inner dense layer and an outer coarse layer in the similar manner for pure Mg. The inner layer on AZ31 was composed of dome-shape precipitates densely packed. The outer layer was composed of rod-like crystals growing from each dome in the radial direction. The (002) plane of HAp of inner layer and rod-like crystals roughly oriented to the substrate. Magnesium ion-release and corrosion current density were remarkably reduced with HAp coatings. Each of these values was on the same order of magnitude between HAp-coated AZ31 and pure Mg. The ion release from AZ31 slightly decreased with an increase in treatment time. The original inner dense layer of AZ31 remained after the immersion. It is suggested that the protectiveness of HAp coating relays on the inner layer and does not significantly depend on the kind of Mg substrate.  相似文献   

10.
The corrosion behaviour of silicon-carbide-particle (SiCp) reinforced AZ92 magnesium alloy manufactured by a powder metallurgy process was evaluated in 3.5 wt.% NaCl solution, neutral salt fog (ASTM B 117) and high relative humidity (98% RH, 50 °C) environments. The findings revealed severe corrosion of AZ92/SiC/0-10p materials in salt fog environment with formation of corrosion products consisting of Mg(OH)2 and (Mg,Al)x(OH)y. The addition of SiCp increased the corrosion rate and promoted cracking and spalling of the corrosion layer for increasing exposure times. Composite materials revealed higher corrosion resistance in high humidity atmosphere with almost no influence of SiCp on the corrosion behaviour.  相似文献   

11.
The corrosion performance of WE43-T6 and AZ91D magnesium alloys with and without treatment by plasma electrolytic oxidation (PEO) was investigated by electrochemical measurements in 3.5 wt.% NaCl solution. For untreated WE43-T6 alloy, formation of a uniform corrosion layer (Mg(OH)2) was accompanied by initial pits around magnesium-rare earth intermetallic compounds. The AZ91D alloy disclosed increased corrosion susceptibility, with localized corrosion around the β-phase, though the β-phase network phase acted as a barrier for corrosion progression. PEO treatment in alkaline phosphate electrolyte improved the corrosion resistance of WE43-T6 alloy only at the initial stages of immersion in the test solution. However, PEO-treated AZ91D alloy revealed a relatively high corrosion resistance for much increased immersion times, contrary to the relative corrosion resistances of the untreated alloys. The improved performance of the PEO-treated AZ91D alloy appears to be related to the formation of a more compact coating.  相似文献   

12.
利用盐水浸泡实验研究了AZ91D镁合金阳极氧化膜层在3.5%NaCl溶液中的腐蚀行为。结果表明:AZ91D镁合金阳极氧化膜层不论封闭与否,在中性NaCl溶液中浸泡出现第一个腐蚀点后,膜层表面均很少再出现新的腐蚀点,而是原有的腐蚀点向纵、横两个方向扩展形成腐蚀坑,表面呈“树枝”状腐蚀形貌;浸泡溶液的pH值对阳极氧化膜层的耐蚀性影响很大,酸性溶液中的腐蚀速率明显大于中、碱性溶液的;随浸泡溶液温度的升高阳极氧化膜层的腐蚀速率加快。据此,提出了AZ91D镁合金阳极氧化膜层在NaCl溶液中腐蚀过程的模型。  相似文献   

13.
An electroplating process was proposed for obtaining a protective Cr/Cu deposit on the two-phase Mg alloy AZ91D. The corrosion behavior of Cu-covered and Cr/Cu-covered AZ91D specimens was studied electrochemically in 0.1 M H2SO4 with different NaCl concentrations. Experimental results showed that the corrosion resistance of an AZ91D specimen improved significantly after Cr/Cu electrodeposition. The corrosion resistance of Cr/Cu-covered AZ91D decreased with increasing NaCl concentration in 0.1 M H2SO4 solution. After immersion in a 0.1 M H2SO4 with a NaCl-content above 3.5 wt.%, the surface of Cr/Cu-covered AZ91D suffered a few blisters. Cracks through the Cr deposit provided active pathways for corrosion of the Cu and the AZ91D substrate. Formation of blisters on the Cr/Cu-covered AZ91D surface was confirmed based on the results of an open-circuit potential test, which detected an obvious potential drop from noble to active potentials.  相似文献   

14.
Effect of tin modification on corrosion of AM70 magnesium alloy   总被引:1,自引:0,他引:1  
Guang-Ling Song   《Corrosion Science》2009,51(9):2063-2070
In this study, AM70 magnesium alloys with and without 2 wt.% Sn addition are compared for their corrosion performance. They are found to have similar corrosion rates in the first 70 h in 5 wt.% NaCl solution, but in extended immersion test the Sn modified AM70 exhibits accelerated overall corrosion. Nevertheless, Sn modification significantly decreases the susceptibility of the alloy to localized corrosion attack. Polarization curve measurements further indicate that the Sn modified AM70 is likely to have worse galvanic corrosion than AM70 in terms of the loss of metal, but again the Sn modification makes the galvanic corrosion less localized, which is an improvement aspect of the galvanic corrosion performance. The effect of Sn addition on the corrosion behavior appears to be associated with the presence of Sn-containing particles and the solute Sn in the matrix phase, which may change the electrochemical anodic and cathodic polarization behavior of the alloy.  相似文献   

15.
Electroless Ni‐P‐ZrO2 and Ni‐P coatings on AZ91D magnesium alloy were prepared, and their corrosion protection properties were compared in this paper. The potentiodynamic curves and electrochemical impedance spectroscopy (EIS) of the coated magnesium alloy in 3.5% NaCl solution showed that the corrosion performance of Ni‐P‐ZrO2 composite coating was superior to that of Ni‐P coating. The same conclusion was obtained with salt spray and immersion tests. The corrosion morphologies of two kinds of coatings with various immersion time intervals in 3.5% NaCl solution indicated that most corrosion products concentrated on the nodules boundaries of Ni‐P coating and blocked corrosion pit was the main corrosion form. For the Ni‐P‐ZrO2 coating, tortuous nodules boundaries were not the weak sites of the coating and corrosion initiated from the nickel phosphor alloy around the nanometer powders. Open corrosion pits occurred on the composite coating surface, and the coating was corroded gradually. Thus, the Ni‐P‐ZrO2 coating exhibited better corrosion protection property to magnesium alloy substrate than Ni‐P coating.  相似文献   

16.
Golden-yellow-colored cerium conversion coatings on AZ91D magnesium alloy were obtained by immersion in ethanol solution and post-treated in 3.0 wt.% Na3PO4 aqueous solution. SEM revealed that the coatings deposited more heavily on α phase than on β phase. XPS results showed that the coatings consist of CeO2, Ce2O3, CePO4, Al2O3, Mg3(PO4)2 and MgO. Corrosion tests indicated that the coatings with post-treatment significantly reduced the corrosion rate of AZ91D alloy in NaCl solution. The post-treatment is necessary for better corrosion resistance. The corrosion resistance of the coatings with post-treatment is superior to that of DOW No.1 coating.  相似文献   

17.
Electroless Ni-P coating of different magnesium alloys   总被引:1,自引:0,他引:1  
Coating of AZ31B, AE 42 and ZRE1 wrought magnesium alloys was carried out using electroless Ni plating technique in a solution of nickel sulphate, sodium hypophosphite, ammonium hydrogen fluoride and glycine with a zinc immersion pre-treatment.The results of SEM/EDX investigations and X-ray diffraction indicate that the coat exhibit a typical surface morphology with compact nodules with good adherence to the substrate. The coat was composed of amorphous structure, which transformed to a mixture of crystalline Ni and Ni3P precipitates after heat treatment at 673°K for 1 h. The phosphorous (P) content increased gradually from the substrate towards the surface reaching a maximum of 10 wt.% to 18 wt.% on the surface depending on the substrate alloy and the thickness of deposit. The hardness of the coat was found to increase with the P content and also after heat treatment. The electrochemical corrosion test in NaCl solution indicated a great improvement in the corrosion resistance of the Mg substrates and that a noble behaviour of Ni-P was obtained regardless of the heat treatment process. The forming ability test indicates that hot rolling of the coated substrate does not succeed to keep a continuous coat due to cracking of the coat in both as-coated and heat treated specimens.  相似文献   

18.
A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic polarization and immersing experiments in 3.5% NaCl solution. The wear resistance of the coatings was investigated by the wear track and the mass change after ball-on-disk experiment. The results show that corrosion resistance and wear resistance of the AZ91D alloy are greatly improved after direct electroless Ni-P plating. No discoloration is noticed until 4 d of immersion in 3.5% NaC1 solution. Potentiodynamic polarization experiments show that the free corrosion potential of magnesium alloy is shifted from -1 500 mV to -250 mV and passivation occurs at 1 350 mV after direct electroless plating. The friction coefficients and wear rates of Ni-P coating and Ni-P coating after tempering are 0.10-0.351, 9.038×10^-3 mm^3/m and 0.13-0.177, 3.056×10^-4 mm^3/m, respectively, at a load of 1.5 N with dry sliding. Although minor hurt on corrosion resistance was caused, significant improvement of wear resistance was obtained after tempering treatment of the coating.  相似文献   

19.
采用微弧氧化技术(MAO)在镁合金 AZ91D 表面制备微弧氧化陶瓷膜。利用电化学技术和浸泡实验研究该镁合金试样在不同浓度(0.1%,0.5%,1.0%,3.5%和 5.0%,质量分数) NaCl 溶液中的腐蚀行为。结果表明,试样的腐蚀速率随着氯离子浓度的升高而增大。在较高浓度(1.0%,3.5%和 5.0%)的 NaCl 溶液中的主要腐蚀形式是点蚀,而在较低浓度(0.1%和 0.5%)中是全面腐蚀。腐蚀过程可以分为两个阶段:亚稳态蚀点的出现和蚀点的生长。根据腐蚀过程中阻抗谱的特点,对镁合金微弧氧化膜试样在不同浓度 NaCl 溶液中浸泡 120 h 提出了不同的等效电路来模拟其腐蚀行为。  相似文献   

20.
The corrosion behaviour of AZ92 magnesium alloy reinforced with various volume fractions of silicon carbide particles (SiCp) and treated by alternating current (AC) plasma electrolytic oxidation (PEO) was investigated in humid and saline environments. For untreated composites, corrosion attack started around the Al-Mn inclusions and gradually developed into general corrosion without significant galvanic coupling between the matrix and the SiCp. PEO coatings consisted mainly of MgO and Mg2SiO4, and revealed increased hardness, reduced thickness and slightly higher corrosion resistance with increasing proportion of reinforcement. Pit formation and hydration of the outer layer were the main mechanisms of corrosion of PEO-treated specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号