共查询到20条相似文献,搜索用时 0 毫秒
1.
燃气轮机冷却技术综述 总被引:2,自引:0,他引:2
详细地阐述了对气膜冷却、内部强化换热以及热管冷却等的影响因素,目前的应用状况以及发展前景.重点集中在内部强化换热和热管冷却.本文可以使刚开始接触燃气轮机冷却技术的人员对冷却技术有个整体的了解,还可以对研究设计人员提供必要的参考依据. 相似文献
2.
3.
燃气轮机压气机喘振及其控制算法 总被引:1,自引:0,他引:1
压气机是燃气轮机的三大部件之一,它运行的安全、高效对燃气轮机性能至关重要。本文扼要地介绍了压气机喘振的影响因素,分析了压气机的性能曲线和喘振线;在此基础上针对压气机某一种喘振控制策略,分析其各种控制设定曲线和控制算法。通过以上两方面的介绍,希望对燃气轮机压气机的喘振防治有所帮助。 相似文献
4.
The present investigation analyzes the effects of major geometrical modifications to the interior of a convection cooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the impact on the heat transfer. An experimental approach is performed with flow visualization via paint injection into water. Also numerical calculations are carried out in two sets, on the one hand water calculations accompanying the experiments and on the other hand conjugate heat transfer calculations under realistic engine conditions. The latter calculations are still ongoing delivering preliminary results. Five geometry configurations are investigated, three of them with differing turbulator arrangements in the leading edge channels. The operating point of the base configuration is set to Re = 50,000 at the inlet while for the modified geometries the pressure ratio is held constant compared to the base. 相似文献
5.
6.
Mist film cooling simulation at gas turbine operating conditions 总被引:1,自引:0,他引:1
Air film cooling has been successfully used to cool gas turbine hot sections for the last half century. A promising technology is proposed to enhance air film cooling with water mist injection. Numerical simulations have shown that injecting a small amount of water droplets into the cooling air improves film-cooling performance significantly. However, previous studies were conducted at conditions of low Reynolds number, temperature, and pressure to allow comparisons with experimental data. As a continuous effort to develop a realistic mist film cooling scheme, this paper focuses on simulating mist film cooling under typical gas turbine operating conditions of high temperature and pressure. The mainstream flow is at 15 atm with a temperature of 1561 K. Both 2D and 3D cases are considered with different hole geometries on a flat surface, including a 2D slot, a simple round hole, a compound-angle hole, and fan-shaped holes. The results show that 10–20% mist (based on the coolant mass flow rate) achieves 5–10% cooling enhancement and provides an additional 30–68 K adiabatic wall temperature reduction. Uniform droplets of 5–20 μm are used. The droplet trajectories indicate the droplets tend to move away from the wall, which results in a lower cooling enhancement than under low pressure and temperature conditions. The commercial software Fluent is adopted in this study, and the standard k–ε model with enhanced wall treatment is adopted as the turbulence model. 相似文献
7.
本文介绍了M701F型燃气轮机冷却系统的组成、日本三菱公司在F系列或G系列燃气轮机上所采用的冷却技术及其应用情况,阐明了三菱公司研发的大型燃气轮机之所以能够安全稳定运行并具有很高的可靠性和热效率,采用先进的冷却技术是其成功的重要因素之一。 相似文献
8.
通过对燃机内环水所携带热量的研究,设计换热器,论证了用内环水加热燃机天然气进气的可行性,从而达到回收内环水余热,节约能源的目的。 相似文献
9.
10.
无气体产生燃料在AIP装置上的应用具有优势,如不会释放燃烧反应气体,不存在燃烧产物排放问题,不会形成排气尾迹。针对闭式循环气轮机装置使用的无气体产生燃料,提出了无气体产生燃料及其氧化剂选择和需满足的技术要求,给出了一些无气体产生燃料及其相应氧化剂的种类和性质,介绍了无气体产生燃料的燃烧方式和燃烧设备,描述了使用无气体产生燃料的闭式循环蒸汽轮机装置和燃气轮机装置的系统组成及工作原理,并对一些应用上问题进行了分析。 相似文献
11.
Turbine air inlet cooling is one of many available commercial methods to improve the efficiency of an existing gas turbine. The method has various configurations which could be utilized for almost all installed gas turbines. This paper presents a comparison between two commons and one novel inlet air cooling method using turbo-expanders to improve performance of a gas turbine located at the Khangiran refinery in Iran. These methods have been applied to one of the refinery gas turbines located at the Khangiran refinery in Iran. Two common air cooling methods use evaporative media or a mechanical chiller. The idea behind the novel method is to utilize the potential cooling and power capacity of the refinery natural gas pressure drop station by replacing throttling valves with a turbo-expander. The study is part of a comprehensive program with the goal of enhancing gas turbine performance at the Khangiran gas refinery. Based on the results, it is found that using turbo-expanders is the most economically feasible option and so is recommended to be utilized for improving gas turbine performance at the Khangiran refinery. 相似文献
12.
13.
14.
15.
Cun-liang Liu Hui-ren Zhu Jiang-tao Bai Du-chun Xu 《International Journal of Heat and Mass Transfer》2010,53(23-24):5232-5241
Experimental tests have been performed to investigate the film cooling performance of converging slot-hole (console) rows on the turbine blade. Film cooling effectiveness of each single hole row is measured under three momentum flux ratios based on the wide-band liquid crystal technique. Measurements of the cooling effectiveness with all the hole rows open are also carried out under two coolant–mainstream flux ratios. Film cooling effectiveness of cylindrical hole rows on the same blade model is measured as a comparison. The results reveal that the trace of jets from both consoles and cylindrical holes is converging on the suction surface and expanding on the pressure surface by the influence of the passage vortex, while the influence of passage vortex on the jets from consoles is weaker. The film coverage area and the film cooling effectiveness of single/multiple console row(s) are much larger than those of single/multiple cylindrical hole row(s). When the console row is discrete and the diffusion angle of the console is not very large, the adjacent jets cannot connect immediately after ejecting out of the holes and the cooling effectiveness in the region between adjacent holes is relatively lower. On the pressure surface, the film cooling effectiveness of console rows increases notably with the increasing of momentum flux ratio or coolant–mainstream flux ratio. But on the suction side, the increase in cooling effectiveness is not very notable for console row film cooling as the coolant flux increases. Moreover, for the film cooling of single console row at the gill region of the suction surface, the jets could lift off from the blade surface because of the convex geometry of the suction surface. 相似文献
16.
17.
This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features. 相似文献
18.
Comparative performance analysis of cogeneration gas turbine cycle for different blade cooling means
The paper compares the thermodynamic performance of MS9001 gas turbine based cogeneration cycle having a two-pressure heat recovery steam generator (HRSG) for different blade cooling means. The HRSG has a steam drum generating steam to meet coolant requirement, and a second steam drum generates steam for process heating. Gas turbine stage cooling uses open loop cooling or closed loop cooling schemes. Internal convection cooling, film cooling and transpiration cooling techniques employing steam or air as coolants are considered for the performance evaluation of the cycle. Cogeneration cycle performance is evaluated using coolant flow requirements, plant specific work, fuel utilisation efficiency, power-to-heat-ratio, which are function of compressor pressure ratio and turbine inlet temperature, and process steam drum pressure. The maximum and minimum values of power-to-heat ratio are found with steam internal convection cooling and air internal convection cooling respectively whereas maximum and minimum values of fuel utilisation efficiency are found with steam internal convection cooling and closed loop steam cooling. The analysis is useful for power plant designers to select the optimum compressor pressure ratio, turbine inlet temperature, fuel utilisation efficiency, power-to-heat ratio, and appropriate cooling means for a specified value of plant specific work and process heating requirement. 相似文献
19.
The gas turbine power output and efficiency decrease with increasing ambient temperature. With compressor inlet air cooling, the air density and mass flow rate as well as the gas turbine net power output increase. The inlet cooling techniques include vapor or absorption refrigeration systems, evaporative cooling systems and thermal energy storage (TES) systems. In this paper the thermoeconomic analysis of ice (latent) thermal energy storage system for gas turbine inlet cooling application was performed. The optimum values of system design parameters were obtained using genetic algorithm optimization technique. The objective function included the capital and operational costs of the gas turbine, vapor compression refrigeration system, without (objective function I) and with (objective function II) corresponding cost due to the system exergy destruction. For gas turbines with net power output in the range of 25-100 MW, the inlet air cooling using a TES system increased the power output in the range of 3.9-25.7%, increased the efficiency in the range 2.1-5.2%, while increased the payback period from about 4 to 7.7 years. 相似文献