首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modifications are introduced to account for the differences in crack growth behavior of long and short cracks, that permit the use of the stress intensity factor. These modifications stem from the principles of fracture mechanics for small- and large-scale yielding. Short cracks can grow well below the long crack fatigue threshold range, because the short crack fatigue threshold range is smaller than that for long cracks as it is dependent on the stress level, and the plastic constraint factor. Analytical expressions are developed for these relationships, and for the fatigue crack growth rates in plane stress and plane strain, for short semi-elliptical cracks including those emanating from notches. Microstructural features are not considered. A linear approximation is used for the gradual transition from plane stress to plane strain. The model is formulated using only the readily available material properties. It is then validated using published experimental data for fatigue crack propagation rates for positive and negative stress ratios down to –2. There is reasonable agreement between the model predictions and the published experimental data for short cracks (from 0.1 to 2 mm) and long cracks.  相似文献   

2.
The short-crack propagation behaviour of 8090 Al–Li alloy under different ageing conditions has been investigated. The effect of notch geometry on short fatigue crack growth was also studied. The results show that the geometrical configuration of the notch significantly affects the growth behaviour of the short crack, the growth rates of notched short cracks being much higher than those of long cracks at the same stress intensity factor range ΔK level. The orientations of the specimens had a stronger effect on the growth rate of long cracks than on that of short cracks. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
A procedure involving crack initiation under far-field cyclic compression is used to study the fatigue behavior of small flaws which are ˜0.3–0.5 mm in length and are amenable to linear elastic fracture mechanics (LEFM) characterization. This technique enables the determination of the threshold stress intensity range at which crack growth begins for small flaws and provides insight into some closure characteristics. Cracks were propagated in notched specimens of a bainitic steel subjected to fully compressive remote cyclic loads, until complete crack arrest occurred after growth over a distance of only a fraction of a mm at a progressively decreasing velocity. Following this, physically small flaws were obtained by machining away the notch. For the loads examined, the results indicate that the extent of damage left at the tip of the crack grown (and arrested) under remote compression is not large enough to affect subsequent tensile fatigue crack growth, when closure effects are not significant (e.g. at high load ratios). At high load ratios, the growth of small linear elastic cracks is identical to that of corresponding long flaws subjected to the same stress intensity range, which corroborates the similitude concept implicit in the nominal use of LEFM. At low load ratios, however, short tensile cracks propagate substantially faster than the longer flaws and exhibit lower threshold stress intensity range levels. Such apparent differences in their growth rates seem to arise, to a large extent, from the differences in their closure behavior, as indicated clearly from various aspects of the compression method. Global measurements of closure, with their inherent uncertainties, however, cannot account completely for the anomalous behavior of short flaws and for the effect of load ratio on short crack growth. Closure of short flaws begins to develop after growth over a minimum distance of about 0.5 mm in this steel. The significance and limitations of the compression technique are discussed and possible mechanisms responsible for the differences between long and short fatigue cracks are outlined.  相似文献   

4.
Short fatigue crack growth behavior under mixed-mode loading   总被引:1,自引:1,他引:0  
Mixed-mode loading represents the true loading condition in many practical situations. In addition, most of the fatigue life of many components is often spent in the short crack growth stage. The study of short crack growth behavior under mixed-mode loading has, therefore, much practical significance. This work investigated short crack growth behavior under mixed-mode loading using a common medium carbon steel. The effects of load mixity, crack closure, and load ratio on short crack growth behavior were evaluated by conducting experiments using four-point bending specimens with several initial K II /K I mixed-mode ratios and two load ratios. Cracks were observed to grow along the paths with very small K II /K I ratios (i.e. mode I). The maximum tangential stress criterion was used to predict the crack growth paths and the predictions were found to be close to the experimental observations. Several parameters including equivalent stress intensity factor range and effective stress intensity factor range were used to correlate short crack growth rates under mixed-mode loading. Threshold values for short cracks were found to be lower than those for long cracks for all the mixed-mode loading conditions. Crack closure was observed for the entire crack length regime with all load mixity conditions at R ≈ 0.05 and for short crack regime under high load mixity condition at R = 0.5. Several models were used to describe mean stress effects and to correlate crack growth rate data.  相似文献   

5.
A model is proposed to estimate the threshold stress range of a notched component. The model considers the variation of crack closure with crack length in the presence of a notch. The threshold stress range was found from the condition that the minimum value of effective threshold stress intensity range of a crack emanating from a notch equals the effective threshold stress intensity range of a “long” crack. The effects of notch depth, of notch acuity, of notch and specimen type, of load ratio, and of material properties on the threshold stresses were considered. Experimental data reported in the literature were used to assess the validity of the model. It was found that the model correctly predicts the behavior of cracks in notched components.  相似文献   

6.
Fatigue propagation tests on artificial short cracks (initial length ? 0.15 mm) were performed in vacuum and in nitrogen containing small traces of water vapour (? 3 ppm) on a high strength aluminium alloy type 7075 in two aged conditions (T651 and T7351) at a load ratio of 0.1 and a frequency of 35 Hz. A predominant influence of environment was determined for short crack growth. This behaviour has been discussed in terms of crack growth rate versus the effective stress intensity factor range relationship previously determined for long cracks. The results obtained suggest the absence of closure at the early stage of short crack growth with an enhanced environmental influence as compared to long crack behaviour at the same load ratio. As the crack grows the effect of closure increases progressively and the short crack effect disappears after a crack growth of the order of 1 mm.  相似文献   

7.
Abstract— Fatigue crack growth rates for a steel in saltwater at different but constant stress intensity factor ranges have been evaluated as a function of the crack length (as measured from the notch root) for cracks longer than so-called "short" cracks. Equations describing the crack growth rate as a function of both the crack length and the stress intensity factor range have been obtained, and the effect of simulated infinite thickness of the specimens is discussed. The equations satisfactorily describe the numerous literature data for different steels, different specimens and different test conditions.  相似文献   

8.
The rates of growth of short fatigue cracks initiated from a notch are much greater than the rates of growth of long fatigue cracks for the same values of K. A decrease in the strength of materials caused by aging affects the behavior of long cracks. The geometric form of the notch strongly affects the behavior of short cracks. The growth rate of a short crack initiated from a sharp notch decreases and attains a minimum value at a length of 0.45 mm, which is far beyond the region of its influence. However, short cracks initiated from blunt notches exhibit slower growth in the region of stress concentration than outside this region. Strain fields induced by deformation of the tip of the notch are not the only factor inhibiting the propagation of short cracks from notches. To explain the behavior of a short crack initiated at a notch, one must take into account some other factors, in particular, crack closure.Published in Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 31, No. 1, pp. 39–44, January – February, 1995.  相似文献   

9.
Fatigue crack growth tests of HY130 steel were conducted under either constant-load-range or constant-stress-intensity-range conditions, by using four-point-bend and compact-tension specimens with a crack of length 0.4–41 mm. The tests were conducted in 3.5% NaCl solution under either the freely corroding condition or with the specimen coupled to a sacrificial zinc anode.Crack growth rates for the zinc-coupled case were higher than those for the freely corroding case, for either the long crack or short crack specimen. The growth rates of short cracks were faster than those of long cracks for the same environment. The maximum amount of crack growth acceleration due to crack size effect was about a factor of two for these alloy-environment combinations. With increasing crack length, the rate for short cracks converges to that for long cracks. Since there was no crack-size effect in air, the additional enhancement in the rate of crack growth for short cracks must be chemical in nature.The upper limit of chemically short cracks (as delineated by the point of convergence of rates) was shorter for the freely corroding case than for the zinc-coupled case, and was longer for the higher stress intensity range, for both the constant-load-range and the constant-stress-intensity-range tests. The observed effect of crack size on crack growth rates is discussed in terms of the hydrogen embrittlement mechanisms.  相似文献   

10.
A new resistance-curve method was proposed for predicting the growth threshold of short fatigue cracks near the notch root. The resistance curve was constructed in terms of the experimentally determined threshold value of the maximum stress intensity factor which was the sum of the threshold effective stress intensity range ΔKeffth and the opening stress intensity factor Kopth The ΔKeffth value was constant, irrespective of crack length or notch geometry. The relation between Kopth and crack length was independent of notch geometry. The predicted effects of the notch-root radius and the notch depth on the propagation threshold of short fatigue cracks were compared with the experimental data obtained using center-notched specimens with various notch-root radii and single-edge notched specimens with various notch depths. Excellent agreement was obtained between predictions and experiments.  相似文献   

11.
Heavy components of ductile cast iron frequently exhibit metallurgical defects that behave like cracks under cyclic loading. Thus, in order to decide whether a given defect is permissible, it is important to establish the fatigue crack growth properties of the material. In this paper, results from a comprehensive study of ductile cast iron EN‐GJS‐400‐18‐LT have been reported. Growth rates of fatigue cracks ranging from a few tenths of a millimetre (‘short’ cracks) to several millimetres (‘long’ cracks) have been measured for load ratios R=?1, R= 0 and R= 0.5 using a highly sensitive potential‐drop technique. Short cracks were observed to grow faster than long cracks. The threshold stress intensity range, ΔKth, as a function of the load ratio was fitted to a simple crack closure model. Fatigue crack growth data were compared with data from other laboratories. Single plain fatigue tests at R=?1 and R= 0 were also carried out. Fracture toughness was measured at temperatures ranging from ?40 °C to room temperature.  相似文献   

12.
Abstract— Evidence is presented that the cyclic stress intensity threshold for fatigue crack growth in A1 2219-T851 is associated with a critical maximum value of stress intensity, K c. This relationship is discovered by measuring the local value of stress intensity at the crack tip which is less than the applied stress intensity because of fatigue induced compressive residual stresses in the plastic zone. Crack growth rates and values of the crack tip residual stress are measured as functions of load ratio. For local stress intensities greater than K c, the growth rate follows a power-law relationship, increasing monotonically with δ K . For local stress intensities below K c, growth rates are also sensitive to the cyclic stress range, δσ. If the stress range is small, a threshold to growth, typical of long cracks, is seen. When the cracks are short and δσ exceeds a critical value, growth rates are a complex function of both δσ and δ K . This behavior is attributed to the effect of δσ on the propagation of the crack front past obstacles such as grain boundaries.  相似文献   

13.
A notched specimen containing a semicircular slot (0.1 mm deep) was designed to simulate the growth of three-dimensional short cracks under a stress concentration. Fatigue tests were performed on N18 superalloy at 650 °C with trapezoidal loading cycles. A high-resolution optical measurement technique proved to be capable of detecting half-surface crack increments as small as 10 μm, and the potential drop method was found to be inappropriate for very small crack lengths. The stress intensity factor, Δ K , was calculated using a weight functions method. Non-uniform stress fields were determined by FEM modelling using elasto-viscoplastic constitutive equations. The plasticity-induced crack closure effect was calculated within the specimen using viscoplastic FEM modelling. The prediction of crack aspect ratio was used to investigate differences of closure along the crack front. The role of notch plasticity on these differences is discussed. Using these calculations, it is shown that the apparent differences between the growth behaviour of short and long cracks can be largely accounted for.  相似文献   

14.
Prediction model for the growth rates of short cracks based on Kmax‐constant tests with M(T) specimens The fatigue crack growth behaviour of short corner cracks in the Aluminium alloys Al 6013‐T6 and Al 2524‐T351 was investigated. The aim was to determine the crack growth rates of small corner cracks at stress ratios of R = 0.1, R = 0.7 and R = 0.8 and to develop a method to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T)‐specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The pre‐cracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a Focussed Ion Beam. The results of the fatigue crack growth tests with short corner cracks were compared with long fatigue crack growth test data. The short cracks grew at ΔK‐values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK‐values and the same stress ratios. A model was developed on the basis of Kmax‐constant tests with long cracks that gives a good and conservative prediction of the short crack growth rates.  相似文献   

15.
Existing theories for the growth of cracks at weld toes have proved difficult to verify because of a lack of experimental proof at short crack depths and slow growth rates. Arbitrary initial defect sizes have been employed in life calculations coupled with approximate two-dimensional stress analyses. In this study, the fatigue performance of a stress relieved fillet weld is determined by both theory and experiment. Crack growth results for shallow (less than 1 mm depth) elliptical cracks at weld toes are used to test an elastic expression for stress intensity using a correction factor from a three-dimensional stress analysis. No evidence of higher than expected growth rates, observed by others for very short cracks and cracks in notch plastic zones, is apparent. Integration of a growth law that includes the threshold stress intensity factor provides fatigue life predictions for various stress ratios and from experimentally measured defect depths. Needle peening the weld toe improves the fatigue life by retarding crack growth up to 1 mm below the weld toe.  相似文献   

16.
The anomalous growth behavior of short fatigue cracks in a Ni-based superalloy is examined. Experimental and analytical work is presented which clearly demonstrates the break-down of linear elastic fracture mechanics (LEFM) in the “so-called” short crack regime. Short crack data only appear anomalous when correlated in terms of the stress intensity factor. When short and long crack data are analyzed in terms of a more valid driving force (e.g. strain energy density criteria), no anomalous short crack behavior is observed.  相似文献   

17.
Single‐edge notched specimens of a unidirectional SiC long fibre reinforced titanium alloy, were fatigued under four point bending. The propagation behaviour of short fatigue cracks from a notch was observed on the basis of the effects of fibre bridging. The branched fatigue cracks were initiated from the notch root. The fatigue cracks propagated only in the matrix and without fibre breakage. The crack propagation rate decreased with crack extension due to the crack bridging by reinforced fibres. After fatigue testing the loading and residual stresses in the reinforced fibres were measured for the arrested cracks by the X‐ray diffraction method. The longitudinal stresses in the reinforced fibres were measured using high spatial resolution synchrotron radiation. A stress map around the fatigue cracks was then successfully constructed. The longitudinal stress decreased linearly with increasing distance from a location adjacent to the wake of the matrix crack. This region of decreasing stress corresponded to the debonding area between the fibre and the matrix. The interfacial frictional stress between the matrix and the fibre could be determined from the fibre stresses. The bridging stress on the crack wake was also measured as a function of a distance from a notch root. The threshold stress intensity factor range, corrected on the basis of the shielding stress, was similar to the propagation behaviour of the monolithic matrix. Hence the main factor influencing the shielding effect in composites is fibre bridging.  相似文献   

18.
In this paper, the near-threshold fatigue behavior of physically through-thickness short cracks and of long cracks in a low alloy steel is investigated by experiments in ambient air. Physically through-thickness short fatigue cracks are created by gradually removing the plastic wake of long cracks in compact tension specimens. The crack closure is systematically measured using the compliance variation technique with numerical data acquisition and filtering for accurate detection of the stress intensity factor (SIF) at the crack opening. Based on the experimental results, the nominal threshold SIF range is shown to be dependent on the crack length and the characteristic of the crack wake which is strongly dependent on the loading history. The effective threshold SIF range and the relation between the crack propagation rate and the effective SIF range after the crack closure correction are shown to be independent on crack length and loading history. The shielding effect of the crack closure is shown to be related to the wake length and load history. The effective threshold SIF range and the relationship between the crack growth rate and the effective SIF range appear to be unique for this material in ambient air. These properties can be considered as specific fatigue properties of the couple material/ambient air environment.  相似文献   

19.
Fatigue growth of short cracks in Ti-17: Experiments and simulations   总被引:1,自引:0,他引:1  
The fatigue behaviour of through thickness short cracks was investigated in Ti-17. Experiments were performed on a symmetric four-point bend set-up. An initial through thickness crack was produced by cyclic compressive load on a sharp notch. The notch and part of the crack were removed leaving an approximately 50 μm short crack. The short crack was subjected to fatigue loading in tension. The experiments were conducted in load control with constant force amplitude and mean values. Fatigue growth of the short cracks was monitored with direct current potential drop measurements. Fatigue growth continued at constant R-ratio into the long crack regime. It was found that linear elastic fracture mechanics (LEFM) was applicable if closure-free long crack growth data from constant KImax test were used. Then, the standard Paris’ relation provided an upper bound for the growth rates of both short and long crack.The short crack experiments were numerically reproduced in two ways by finite element computations. The first analysis type comprised all three phases of the experimental procedure: precracking, notch removal and fatigue growth. The second analysis type only reproduced the growth of short cracks during fatigue loading in tension. In both cases the material model was elastic-plastic with combined isotropic and kinematic hardening. The agreement between crack tip opening displacement range, cyclic J-integral and cyclic plastic zone at the crack tip with ΔKI verified that LEFM could be extended to the present short cracks in Ti-17. Also, the crack size limits described in the literature for LEFM with regards to plastic zone size hold for the present short cracks and cyclic softening material.  相似文献   

20.
It is observed that the short fatigue cracks grow faster than long fatigue cracks at the same nominal driving force and even grow at stress intensity factor range below the threshold value for long cracks in titanium alloy materials. The anomalous behaviours of short cracks have a great influence on the accurate fatigue life prediction of submersible pressure hulls. Based on the unified fatigue life prediction method developed in the authors' group, a modified model for short crack propagation is proposed in this paper. The elastic–plastic behaviour of short cracks in the vicinity of crack tips is considered in the modified model. The model shows that the rate of crack propagation for very short cracks is determined by the range of cyclic stress rather than the range of the stress intensity factor controlling the long crack propagation and the threshold stress intensity factor range of short fatigue cracks is a function of crack length. The proposed model is used to calculate short crack propagation rate of different titanium alloys. The short crack propagation rates of Ti‐6Al‐4V and its corresponding fatigue lives are predicted under different stress ratios and different stress levels. The model is validated by comparing model prediction results with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号