共查询到18条相似文献,搜索用时 78 毫秒
1.
求解TSP问题的模糊自适应粒子群算法 总被引:9,自引:0,他引:9
由于惯性权值的设置对粒子群优化(PSO)算法性能起着关键的作用,本文通过引入模糊技术,给出了一种惯性权值的模糊自适应调整模型及其相应的粒子群优化算法,并用于求解旅行商(TSP)问题。实验结果表明了改进算法在求解组合优化问题中的有效性,同时提高了算法的性能,并具有更快的收敛速度。 相似文献
2.
针对基本粒子群(PSO)算法不能较好地解决旅行商优化问题(TSP),分析了基本粒子群算法的优化机理,在新定义粒子群进化方程中进化算子的基础上利用混沌运动的随机性、遍历性等特点,提出一种结合混沌优化和粒子群算法的改进混沌粒子群算法.该算法对惯性权重进行自适应调整,引入混沌载波调整搜索策略避免陷入局部最优,形成一种同时满足全局和局部寻优搜索的混合离散粒子群算法,使其适合解决TSP此类组合优化问题.利用MATLAB对其进行了仿真.仿真结果说明此算法的搜索精度、收敛速度及优化效率均较优,证明了此算法在TSP中应用的有效性,且为求解TSP提供了一种参考方法. 相似文献
3.
针对NP-hard组合优化问题,提出一种基于启发因子的自适应混合离散粒子群算法对其进行求解。通过改进离散粒子群运动方程,并加入启发因子,从而提高算法的收敛性和稳定性;依据粒子多样性的动态变化,引入自适应扰动算子,以保持种群进化能力。该算法对低、中、高维的TSP数据仿真结果表明,与其他混合离散粒子群算法相比,具有更好的全局收敛性和稳定性。 相似文献
4.
基于QPSO方法优化求解TSP 总被引:14,自引:0,他引:14
针对粒子群优化算法PSO求解旅行商问题TSP收敛速度不够快的缺陷,提出利用量子粒子群优化算法QPSO求解TSP,在交换子和交换序概念的基础上,以Matlab语言为开发工具实现了TSP最佳路径的求解.实验表明改造QPSO算法用于优化求解14点的TSP,能够迅速得到最优解,收敛速度加快,搜索效率得到较大水平提高;QPSO方法在求解组合优化问题中将非常有效. 相似文献
5.
针对粒子群算法(PSO)的早熟收敛现象,从种群多样性出发,基于自组织临界性特点改进PSO 算法的参数设置,采用自组织的惯性权重和加速系数,并增加了变异算子。借鉴交换子和交换序概念,设计出了能直接在离散域进行搜索的改进的自组织PSO算法。用于旅行商问题(TSP)的求解,并与基本及其他典型改进PSO算法进行性能比较。实验结果证实改进的自组织PSO算法是有效的。 相似文献
6.
7.
8.
PSO算法在MAV群并行仿真试验中的应用研究 总被引:1,自引:0,他引:1
利用MAV群执行搜索任务具有安全、快速、高效等优点,无论在军用还是民用方面都将发挥不可替代的作用.考虑到MAV群的续航能力和提高搜索效率的需要,在执行搜索任务的时候首先确定一条最短路径至关重要.寻找最短路径问题已经有许多成熟的方法,研究的是采用粒子群优化算法求解最短路径的问题.与其他求解TSP问题的方法相比,粒子群优化算法具有概念简单、鲁棒性好、智能背景深刻等优点;尤其重要的是它天生具有并行计算的潜质,适于并行化后应用到并行仿真中去.实现了PSO算法的并行化,并验证了运行结果的正确性. 相似文献
9.
文章借鉴了贪心算法的思想产生初始种群,重新定义了粒子的位置、速度等,提出了适合求解旅行商问题的基于k-means的改进粒子群算法。两个种群同时寻优,种群个体最优之间以一定概率进行交叉,减小算法陷入局部最优的概率,提高粒子向更好解进化的速度。实验证明,改进后的粒子群算法能有效地求解TSP问题。 相似文献
10.
米永强 《数字社区&智能家居》2014,(3):1505-1507
蚁群算法是一种求解组合优化问题较好的方法。在蚁群算法的基本原理基础上,以旅行商问题为例,介绍了该算法求解TSP的数学模型及具体步骤,并通过仿真实验与粒子群优化算法等方法比较分析,表明了该算法在求解组合优化问题方面具有良好的性能。 相似文献
11.
在优化领域,粒子群算法适用于求解连续优化问题,而在离散优化上的应用还相对较少。本文在介绍基本粒子群优化算法的基础上,分析了粒子群优化算法在经典旅行商问题 中的应用性能及粒子群算法求解旅行商问题的相关操作。使用Ulysses等标准TSP测试数据进行了相关实验,并通过不同的参数设置对实验结果进行了性能分析和比较。 相似文献
12.
王君丽 《数字社区&智能家居》2009,5(5):3511-3512,3515
针对Hopfield网络求解TSP问题经常出现局部最优解,该文将混沌粒子群算法(PSO)与之结合,提出一种基于混沌粒子群的Hopfield神经网络方法。通过实验将其与文献[5,8]以及“PSO+HNN”策略比较,验证了该文算法不仅能够以更大概率收敛到全局最优,而且耗时更少。 相似文献
13.
王君丽 《数字社区&智能家居》2009,(13)
针对Hopfield网络求解TSP问题经常出现局部最优解,该文将混沌粒子群算法(PSO)与之结合,提出一种基于混沌粒子群的Hopfield神经网络方法。通过实验将其与文献[5,8]以及"PSO+HNN"策略比较,验证了该文算法不仅能够以更大概率收敛到全局最优,而且耗时更少。 相似文献
14.
针对旅行商问题提出一种离散粒子群算法。算法重新定义了速度及其与粒子位置的相关算子,设计了"距离排序矩阵"(保存距离城市由近到远的其他城市的矩阵),并根据它生成可动态变化的优秀基因库来指导粒子高效地进行全局搜索。本文用TSPLIB中的部分案例进行实验,实验结果表明,该算法在求解旅行商问题上有很好的性能,并且具有很好的鲁棒性。 相似文献
15.
16.
17.
提出一种求解GTSP问题的自适应离散PSO算法,同时考虑到多种算法的混合,利用调节算子和交换序对PSO算法进行改进.通过对Buramal14,Oliver30和Eil51等测试数据进行实验,证明新算法不仅收敛速度快、鲁棒性更好,而且新的算法对于Burma14和Oliver30更易求得它们的最优解。 相似文献
18.
改进微粒群优化算法求解旅行商问题 总被引:21,自引:2,他引:21
对微粒群优化算法的速度位置算式进行了改进,提出一种改进的微粒群优化算法。该算法符合组合优化问题的特点,在求解旅行商问题上有较高的搜索效率。将改进的PSO算法分别应用于14点的TSP问题以及中国旅行商问题中,该算法在较短时间内获得了目前已知的最好解。 相似文献