共查询到18条相似文献,搜索用时 62 毫秒
1.
为获得较为鲁棒的识别性能,一般的语音识别系统中都会在后端加入一个置信度判决模块,以实现识别错误检测和集外词拒识等功能。针对命令词语音识别系统,传统的基于Filler模型的置信度方法由于自身模型结构的限制,性能相对有限,尤其是对集外词的检测效果不好。为此,使用了一种基于音节循环的置信度判决方法,并对该方法的解码网络进行精简,以满足实用化的效率要求。在中文命令词测试集上的实验结果表明,该方法相对于基于Filler模型的置信度方法对识别效果与识别效率都有了较大的提升。 相似文献
2.
置信度的原理及其在语音识别中的应用 总被引:5,自引:2,他引:5
由于置信度模型可以有效地判断观测数据与语音模型之间的匹配程度,因此可以用来对语音识别结果进行假设检验,定位识别结果中的错误,从而提高系统的识别率和稳健笥,讨论了语音识别中置信度的基本原理,、在值方法、模型性能评价方法、比较全面地介绍了置信度在语音识别中的各种,实验结果表明,置信度在语音识别的搜索的剪枝过程、说话人自适应以及拒识和验证方法面都有显的作用。 相似文献
3.
4.
5.
提出一种基于改进GMM模型的耳语情感语音识别方法.该方法在GMM的每个成员通过用矢量量化误差值取代传统GMM的输出概率值来计算模型的得分,使得建模时所需训练数据量减少,并且识别速度有所提高.实验结果表明当训练数据较少时,提出的新的识别方法的实验结果明显好于传统的GMM方法,证明了该方法的有效性. 相似文献
6.
7.
8.
9.
置信度判决用于确定语音数据与模型之间的匹配程度,可以发现语音命令系统中的识别错误,提高其可靠性.近年来,基于身份矢量(identity vector,i-vector)以及概率线性判别分析(Probabilistic Linear Discriminant Analysis,PLDA)的方法在说话人识别任务中取得了显著效果.本文尝试将i-vector以及PLDA模型作为一种命令词识别结果置信度分析方法,其无需声学模型、语言模型支撑,且实验表明性能良好.在此基础上,针对i-vector在刻画时序信息方面的不足,尝试将该系统与DTW融合,有效提升了系统对音频时序的鉴别能力. 相似文献
10.
本文提出一种基于词格信息的置信度计算方法,估计自适应语音识别结果的可靠性,将不可靠的语音从自适应训练集中去掉,从而减小无监督自适应与有监督自适应间的性能差异,提高无监督自适应的性能。 相似文献
11.
研究了情绪的维度空间模型与语音声学特征之间的关系以及语音情感的自动识别方法。介绍了基本情绪的维度空间模型,提取了唤醒度和效价度对应的情感特征,采用全局统计特征减小文本差异对情感特征的影响。研究了生气、高兴、悲伤和平静等情感状态的识别,使用高斯混合模型进行4种基本情感的建模,通过实验设定了高斯混合模型的最佳混合度,从而较好地拟合了4种情感在特征空间中的概率分布。实验结果显示,选取的语音特征适合于基本情感类别的识别,高斯混合模型对情感的建模起到了较好的效果,并且验证了二维情绪空间中,效价维度上的情感特征对语音情感识别的重要作用。 相似文献
12.
13.
14.
介绍了孤立词语音识别系统,针对片上系统进行了语音识别算法的选择。对基于语音帧的端点检测算法、线性预测编码倒谱系数LPCC算法和动态时间规整DTW算法进行了分析和设计。对于新型语音识别SoC芯片的开发研制和推动片上可编程系统(SoPC)的研究与发展具有一定的理论和实践意义。 相似文献
15.
介绍了Mircosoft Speech SDK中与语音识别有关的接口,讨论了在Visual Basic编程环境下,使用该开发包进行孤立词语音识别的方法,最终结合具体的项目给出了实践过程。 相似文献
16.
针对实际问题中训练数据不足的特点,在对说话人建模时采用的是高斯混合模型—通用背景模型GMM-UBM,针对MCE训练算法中计算量大的显著问题,对其进行改进,改进的MCE算法不仅能使计算量减小,而且识别性能更佳。实验结果表明,在高斯混合数与说话人数不同的情况下,改进的MCE比传统MCE算法都要节省训练时间,且随着高斯混合数与说话人数的增长,节省的时间越多。针对采用MAP、MLLR、MAP\MLLR、EigenVoice方法作自适应得到的说话人模型,然后应用MCE算法与改进的MCE算法,改进的MCE算法比传统MCE方法识别率更高。 相似文献
17.
目前语音跟踪在说话人干扰的条件下,即一段语音中存在多个说话人的混合语音信号时,语音跟踪质量会严重下降。针对这种情况,提出一种基于聚类分析与说话人识别的语音跟踪算法。算法首先使用改进的聚类分析方法进行语音分离,具体包括在K-means聚类中对质心进行缓存并降低采样率,以及在embedding特征空间引入正则项。其次,算法采用GMM-UBM说话人模型进行语音跟踪。实验结果表明改进的聚类分析方法可以有效提高算法的实时性及其语音分离质量,GMM-UBM模型在3 s语音的测试中具有84%的识别率。 相似文献
18.
近几年来,基于端到端模型的语音识别系统因其相较于传统混合模型的结构简洁性和易于训练性而得到广泛的应用,并在汉语和英语等大语种上取得了显著的效果.本文将自注意力机制和链接时序分类损失代价函数相结合,将这种端到端模型应用到维吾尔语语音识别上.考虑到维吾尔语属于典型的黏着语,其丰富的构词形式使得维吾尔语的词汇量异常庞大,本文引入字节对编码算法进行建模单元的生成,从而获得合适的端到端建模输出单元.在King-ASR450维吾尔语数据集上,提出的算法明显优于基于隐马尔可夫模型的经典混合系统和基于双向长短时记忆网络的端到端模型,最终识别词准确率为91.35%. 相似文献