首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
锂离子电池因其高能量密度、长寿命和低自放电率而成为目前占主导地位的移动电源。锂离子电池的安全性一直受到人们的关注。隔膜作为锂离子电池的重要组成部分,既为锂离子的传输提供了通道,同时又隔离了正负电极,防止了电池短路,对锂离子电池的安全性起着重要的作用。近年来,研究人员从方法、材料和实际要求的不同角度致力于开发各种多功能安全隔膜。主要关注高热稳定性、高安全性隔膜的最新进展,用于高安全锂离子电池。此外,还提出了下一代高安全性、锂电池隔膜的未来发展方向和挑战。  相似文献   

2.
对锂离子电池隔膜技术在中、美、欧的专利申请进行了检索、去噪,在此基础上梳理锂离子电池隔膜技术发展生命周期、主要专利权人、技术研发方向,并通过技术功效分析,找到锂离子电池隔膜技术分布和技术效果。从专利分析的结果来看,锂离子电池隔膜技术经历3个阶段,即技术起步期、技术缓慢发展期以及技术快速增长期;锂离子电池隔膜领域的专利主要集中在H01M2/14、H01M2/16、C08J9/00及B32B27/32四大类,主要涉及隔膜的结构、材质及制备工艺;从整体来看,锂离子电池隔膜未来发展方向主要集中在提高隔膜耐热性、研制超薄隔膜、提高隔膜的吸液性能以及研发聚合物电解质隔膜、纤维隔膜等新型隔膜上;并对标东丽、旭化成、帝人、Celgard、住友化学等全球锂离子电池隔膜技术领先公司,建议我国相关研究单位充分发挥在湿法基膜、改性涂布膜研发上的技术优势,优化湿法制膜工艺、拉伸工艺、涂覆改性工艺,提高隔膜安全性、充放电高效性、使用寿命,抢占制高点,针对技术疏松区或技术空白区进行突破。  相似文献   

3.
随着锂离子电池性能的不断提升,对隔膜的性能要求也越来越严格。传统的锂离子电池隔膜材料还存在许多亟待解决的问题,特别是与电池的安全性能方面相关的问题,因此则需要制备具有更加稳定的耐高温和更好机械强度的高分子膜材料。聚对苯二甲酰对苯二胺(PPTA)由于其良好的亲水性、机械性能、耐热性和耐溶剂性,被认为是一类极具发展潜力的新型高性能隔膜材料。然而,如何将PPTA制成具有较高孔隙率的薄膜材料,是目前该领域面临的一大难题。从技术进步的角度,对锂离子电池隔膜制备技术的发展进行了详细的总结,并进行了技术对比分析PPTA电池隔膜的样式。研究表明,PPTA纳米纤维技术可以生产出厚度、孔隙率和电池性能都很好的锂离子电池的隔膜,表明其具有很好的应用潜力。  相似文献   

4.
该文以锂离子电池无纺布隔膜为研究对象,介绍了锂离子电池无纺布隔膜的含义,分析了锂离子电池无纺布隔膜制作方法。并利用机械应力分析的方式,对锂离子电池无纺布隔膜特性进行了探究。  相似文献   

5.
一、我国锂离子电池隔膜产业现状2011-2012年,我国锂离子电池隔膜产业发生了巨大的变化。据网络不完全统计,国内已有40多家企业在建及计划投资锂离子电池隔膜项目,产能超过6亿m2/a。其中,不仅包括较早进入锂离子电池隔膜领域的企业,  相似文献   

6.
锂离子电池因具有能量密度高、循环寿命长、质量轻、无记忆效应等特性,以及快速充放电等优点,因此成为近年来新型电源技术研究的热点,在高能量和高功率领域备受关注。作为锂离子电池的核心材料之一,隔膜的主要功能是使电池的正、负极分隔开来,阻止电子通过。隔膜性能的优劣直接影响着电池内阻、放电容量、循环使用寿命和电池安全性能的好坏。隔膜越薄、孔隙率越高、电池内阻越小,其高倍率放电性能就越好。  相似文献   

7.
隔膜是电池重要原材料之一。它的微孔结构、物理性能、化学特性、热性能等与电池性能有密切的相关性。对于锂离子电池的隔膜,由于锂离子电池具有工作电压高,正极材料的氧化性和负极材料的还原性较高,锂离子电池隔膜材料与高电化学活性的正负极材料应具备优良的相容性,同时还应具备优良的稳定性、耐溶剂性、离子导电性、电子绝缘性、较好的机械强度、较高的耐热性及熔断隔离性。  相似文献   

8.
锂离子电池具有轻巧、能量密度高、循环寿命长等优点,广泛用于便携式电子设备、电动汽车以及能量存储领域.隔膜作为锂离子电池的关键部件之一,承担着隔离正负极以防止电池短路、为锂离子自由穿梭提供通道的作用,决定了电池的安全性和电化学性能.常用的聚烯烃类隔膜具有良好的力学性能、化学稳定性及低廉的成本,但受自身耐热性差、电解液吸收...  相似文献   

9.
锂离子电池隔膜的研究与开发   总被引:9,自引:0,他引:9  
介绍了锂离子电池隔膜材料的研究与进展,重点综述了聚烯烃锂离子电池隔膜材料的制备方法、孔径结构、孔隙率,透气率,自关闭性能等,认为多层复合隔膜既具有一定的强度又具有较低的自关闭温度,较适合作为锂离子电池隔膜,固体聚合物电解质在锂离子电池中作为电解质的同时还可以起隔膜的作用,表现出良好的应用前景。  相似文献   

10.
锂离子电池是一种有潜力的电动汽车和混合电动车用能源[1],具有高比能量、长循环寿命、无记忆效应、安全、可靠且能快速充放电等优点,因而成为近年来新型电源技术研究的热点。隔膜作为锂离子电池的核心组成部件,其性能对电池的安全性能及电  相似文献   

11.
综述了二次锂离子电池聚合物电解质的最新研究进展,对不同类型的聚合物电解质按其基体进行分类,包括常见的几种聚合物基体以及近年来发展起来的几种新型聚合物基体。对于每类基体相关的研究成果,主要关注的是电化学性能。对一些性能优异的聚合物电解质体系及其相应的制备方法,给出了较为全面的概述。与使用液体有机电解质的二次锂离子电池相比...  相似文献   

12.
聚合物固体电解质是制备高功率密度,高能量密度,长循环寿命的锂离子电池的关键材料之一。本文介绍了聚合物固体电解质的制备及基本性能,论述了不同品种聚合物固体电解质的制备方法,并根据存在的问题,提出发展方向。  相似文献   

13.
The ever‐increasing demands for batteries with high energy densities to power the portable electronics with increased power consumption and to advance vehicle electrification and grid energy storage have propelled lithium battery technology to a position of tremendous importance. Carbon nanotubes (CNTs) and graphene, known with many appealing properties, are investigated intensely for improving the performance of lithium‐ion (Li‐ion) and lithium–sulfur (Li–S) batteries. However, a general and objective understanding of their actual role in Li‐ion and Li–S batteries is lacking. It is recognized that CNTs and graphene are not appropriate active lithium storage materials, but are more like a regulator: they do not electrochemically react with lithium ions and electrons, but serve to regulate the lithium storage behavior of a specific electroactive material and increase the range of applications of a lithium battery. First, metrics for the evaluation of lithium batteries are discussed, based on which the regulating role of CNTs and graphene in Li‐ion and Li–S batteries is comprehensively considered from fundamental electrochemical reactions to electrode structure and integral cell design. Finally, perspectives on how CNTs and graphene can further contribute to the development of lithium batteries are presented.  相似文献   

14.
Conventional liquid electrolytes based lithium‐ion batteries (LIBs) might suffer from serious safety hazards. Solid‐state polymer electrolytes (SPEs) are very promising candidate with high security for advanced LIBs. However, the quintessential frailties of pristine polyethylene oxide/lithium salts SPEs are poor ionic conductivity (≈10−8 S cm−1) at 25 °C and narrow electrochemical window (<4 V). Many innovative researches are carried out to enhance their lithium‐ion conductivity (10−4 S cm−1 at 25 °C), which is still far from meeting the needs of high‐performance power LIBs at ambient temperature. Therefore, it is a pressing urgency of exploring novel polymer host materials for advanced SPEs aimed to develop high‐performance solid lithium batteries. Aliphatic polycarbonate, an emerging and promising solid polymer electrolyte, has attracted much attention of academia and industry. The amorphous structure, flexible chain segments, and high dielectric constant endow this class of polymer electrolyte excellent comprehensive performance especially in ionic conductivity, electrochemical stability, and thermally dimensional stability. To date, many types of aliphatic polycarbonate solid polymer electrolyte are discovered. Herein, the latest developments on aliphatic polycarbonate SPEs for solid‐state lithium batteries are summarized. Finally, main challenges and perspective of aliphatic polycarbonate solid polymer electrolytes are illustrated at the end of this review.  相似文献   

15.
Novel composite separators containing metal–organic‐framework (MOF) particles and poly(vinyl alcohol) are fabricated by the electrospinning process. The MOF particles containing opened metal sites can spontaneously adsorb anions while allowing effective transport of lithium ions in the electrolyte, leading to dramatically improved lithium‐ion transference number tLi+ (up to 0.79) and lithium‐ion conductivity. Meanwhile, the incorporation of the MOF particles alleviates the decomposition of the electrolyte, enhances the electrode reaction kinetics, and reduces the interface resistance between the electrolyte and the electrodes. Implementation of such composite separators in conventional lithium‐ion batteries leads to significantly improved rate capability and cycling durability, offering a new prospective toward high‐performance lithium‐ion batteries.  相似文献   

16.
为了改善锂离子电池隔膜的热力学和电化学等性能,以聚乙烯-乙烯醇锂(EVOH-Li)和热塑性聚氨酯(TPU)为原料,利用高压静电纺丝法进行双针头同时纺丝,制备了两种不同纤维丝相互缠结的EVOH-Li-TPU共纺膜。其中,EVOH-Li具有自由脱嵌的锂离子,可以增加电池隔膜的离子导电性;TPU具有良好的力学性能和韧性,可以增加锂离子电池隔膜的抗穿刺性,从而提高其安全性。研究了EVOH-Li-TPU共纺膜的微观形貌、力学性能、吸液率、孔隙率、热学性能及电化学性能,并与EVOH-Li和TPU单纺膜的相关性能进行对比。结果表明,EVOH-Li-TPU共纺膜的拉伸强度和断裂伸长率分别达到6.09 MPa和79.26%,孔隙率和吸液率分别达到84%和321%,室温离子电导率为4.41×10–4 S/cm,界面阻抗相比EVOH-Li和TPU单纺膜显著降低,电化学窗口为5.0 V,EVOH-Li-TPU共纺膜相比于EVOH-Li和TPU单纺膜,各种性能均有所增强。   相似文献   

17.
锂离子电池碳负极材料结构与性能的关系   总被引:3,自引:1,他引:2  
潘钦敏  邓正华 《功能材料》1999,30(4):342-344
论述了目前锂离子电池碳负极材料的研究概况,并且对碳材料的结构特点进行分类;阐述了影响锂离子碳负极 材料结构因素。同时简述了碳材料表面修饰2对碳负极嵌锂性能的影响,评价了各种表面修饰方法的优缺点。  相似文献   

18.
Polymer electrolytes for lithium-ion batteries   总被引:2,自引:0,他引:2  
The motivation for lithium battery development and a discussion of ion conducting polymers as separators begin this review, which includes a short history of polymer electrolyte research, a summary of the major parameters that determine lithium ion transport in polymer matrices, and consequences for solid polymer electrolyte development. Two major strategies for the application of ion conducting polymers as separators in lithium batteries are identified: One is the development of highly conductive materials via the crosslinking of mobile chains to form networks, which are then swollen by lithium salt solutions ("gel electrolytes"). The other is the construction of solid polymer electrolytes (SPEs) with supramolecular architectures, which intrinsically give rise to much enhanced mechanical strength. These materials as yet exhibit relatively common conductivity levels but may be applied as very thin films. Molecular composites based on poly(p-phenylene)- (PPP)-reinforced SPEs are a striking example of this direction. Neither strategy has as yet led to a "breakthrough" with respect to technical application, at least not for electrically powered vehicles. Before being used as separators, the gel electrolytes must be strengthened, while the molecularly reinforced solid polymer electrolytes must demonstrate improved conductivity.  相似文献   

19.
随着锂离子电池等新能源电池在动力/储能领域的不断发展,传统商业聚烯烃隔膜由于润湿性与离子选择性差、孔隙率低等缺点已不能满足高性能锂电池的发展需要。近年来学者针对提升隔膜离子导电性能方面做了大量研究,然而锂电池充放电过程中通常只有阳离子传输参与氧化还原反应,二元电解质中锂离子通常被溶剂分子包围形成较大的溶剂鞘导致阴离子的移动能力反而强于锂离子,电池内部低的阳离子传输效率导致电池出现浓差极化、锂枝晶等问题,限制电池在高倍率下的应用,因此设计抑制阴离子穿梭促进阳离子快速迁移的新型电池隔膜在提升电池综合性能方面具有优异的发展前景。本文从近期的研究热点出发,主要从基团功能化设计、路易斯酸的俘获效应、空间筛分等策略详细介绍基于提升阳离子迁移能力的新型隔膜在电池领域的发展,最后总结指出电池隔膜领域存在的挑战和未来的发展方向。   相似文献   

20.
Lithium-ion batteries have remained a state-of-the-art electrochemical energy storage technology for decades now, but their energy densities are limited by electrode materials and conventional liquid electrolytes can pose significant safety concerns. Lithium metal batteries featuring Li metal anodes, solid polymer electrolytes, and high-voltage cathodes represent promising candidates for next-generation devices exhibiting improved power and safety, but such solid polymer electrolytes generally do not exhibit the required excellent electrochemical properties and thermal stability in tandem. Here, an interpenetrating network polymer with weakly coordinating anion nodes that functions as a high-performing single-ion conducting electrolyte in the presence of minimal plasticizer, with a wide electrochemical stability window, a high room-temperature conductivity of 1.5 × 10−4 S cm−1, and exceptional selectivity for Li-ion conduction (tLi+ = 0.95) is reported. Importantly, this material is also flame retardant and highly stable in contact with lithium metal. Significantly, a lithium metal battery prototype containing this quasi-solid electrolyte is shown to outperform a conventional battery featuring a polymer electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号