首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Field experiments were conducted during 1988–1989 at two adjacent sites on an acid sulfate soil (Sulfic Tropaquept) in Thailand to determine the influence of urea fertilization practices on lowland rice yield and N use efficiency. Almost all the unhydrolyzed urea completely disappeared from the floodwater within 8 to 10 d following urea application. A maximum partial pressure of ammonia (pNH3) value of 0.14 Pa and an elevation in floodwater pH to about 7.5 following urea application suggest that appreciable loss of NH3 could occur from this soil if wind speeds were favorable. Grain yields and N uptake were significantly increased with applied N over the control and affected by urea fertilization practices (4.7–5.7 Mg ha–1 in dry season and 3.0–4.1 Mg ha–1 in wet season). In terms of both grain yield and N uptake, incorporation treatments of urea as well as urea broadcasting onto drained soil followed by flooding 2 d later were more effective than the treatments in which the same fertilizer was broadcast directly into the floodwater either shortly or 10 d after transplanting (DT). The15N balance studies conducted in the wet season showed that N losses could be reduced to 31% of applied N by broadcasting of urea onto drained soil and flooding 2 d later compared with 52% loss by broadcasting of urea into floodwater at 10 DT. Gaseous N loss via NH3 volatilization was probably responsible for the poor efficiency of broadcast urea in this study.  相似文献   

2.
The sustainability of the productive rice-wheat systems of Northwest India is being questioned due to the complete removal of straw for animal consumption and fuel, or the burning of straw which has reduced the soil organic matter contents. However, straw incorporation at planting can temporarily reduce the availability of fertilizer-N and reduce crop yields. In a field study on a loamy sand soil, the effect of 6 mg ha−1 rice straw incorporated into the soil 20 or 40 days before sowing (DBS) the wheat was compared with removal or burning of rice straw on the fate and balance of 120 kg ha−1 of 5 atom% 15N-urea applied to wheat and to a following crop of rice. Wheat grain yield and agronomic efficiency (AE) of applied N (kg grain/kg N applied) were not influenced by rice straw management. However, N uptake (NU), and recovery efficiency (RE) of N by the difference method were lower with rice straw incorporation than with burning. Nitrogen-15 recovery by wheat was highest (41%) when the rice straw was removed or burned and lowest (30.4%) when 30 of the 120 kg N ha−1 was applied at the time of straw incorporation at 20 DBS of wheat. However, this strategy of adding 25% of the urea-N dose at the time of straw incorporation resulted in the highest 15N losses (45.2%). Inorganic N remaining at harvest in the 0 to 60 cm soil profile, mostly NO3 , was 5.5% after wheat and 4.2% after rice. Rice grain yields, NU, and RE were not influenced by rice straw management. Nitrogen-15 losses were similar in rice and wheat (31% with straw removed) despite total irrigation and rainfall inputs of 340 and 32 cm to rice and wheat, respectively. These results suggest to the farmers of northwest India that straw incorporation does not necessarily hurt grain yields, and indicates to researchers that work is still needed to improve N use efficiency in rice and wheat. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Brazil has approximately 30 million hectares of lowland areas, known locally as Varzea, but very little is known about their fertility and crop production potential. A field experiment was conducted for three consecutive years to evaluate response of lowland rice (Oryza sativa L.) grown in rotation with common bean (Phaseolus vulgaris L.) on a Varzea (low, Humic Gley) soil. Rice was grown at low (no fertilizer), medium (100 kg N ha–1, 44 kg P ha–1, 50 kg K ha–1, 40 kg FTE-BR 12 ha–1), and high (200 kg N ha–1, 88 kg P ha–1, 100 kg K ha–1, 80 kg FTE-BR 12 ha–1 fritted trace element-Brazil 12 as a source of micronutrients) soil fertility levels. Green manure with medium fertility was also included as an additional treatment. Average dry matter and grain yields of rice and common bean were significantly (P < 0.01) increased with increasing fertilization. Across the three years, rice yield was 4327 kg ha–1 at low fertility, 5523 kg ha–1 at medium fertility, 5465 kg ha–1 at high fertility, and 6332 kg ha–1 at medium fertility with green manure treatment. Similarly, average common bean yield was 294 kg ha–1 at low soil fertility, 663 kg ha–1 at medium soil fertility, 851 kg ha–1 at high fertility, and 823 kg ha–1 at medium fertility with green manure treatment. Significant differences in nutrient uptake in bean were observed for fertility, year, and their interactions; however, these factors were invariably nonsignificant in rice.  相似文献   

4.
Raising and sustaining rice yields in the rainfed lowlands requires an understanding of nutrient inputs and outputs. On sandy lowland rice soils, managing phosphorus (P) supply is a key factor in achieving increased yields and sustainable production. Phosphorus inputs, rice yields, and crop P uptake were used to quantify P requirements of rice: together with results on soil P fractions, P balance sheets were constructed over five consecutive cropping seasons on a sandy Plinthustalf near Phnom Penh, Cambodia. Grain yields ranged from 665 to 1557 kg ha−1 with no added P. Average yields increased significantly with P fertiliser application over five consecutive crops by 117, 139 and 140% when the phosphate fertiliser was applied at 8.25, 16.5 and 33 kg P ha−1, respectively. Without added P fertiliser, a net loss of 1.2 kg P ha−1 per crop was estimated with straw return and 2.0 kg P ha−1 per crop with straw removed from the field, whereas, with added P fertiliser, there was a net P gain in the soil of 5.6 or 9.5 kg ha−1 per crop when straw was removed and returned to the soil, respectively. After one crop, the addition of P fertiliser significantly (P < 0.01) increased recovery in all soil P fractions. Across five successive crops, repeated application of 16.5 and 33 kg P ha−1 rates resulted in progressive P accumulation in the soil, especially a labile NaOH–Po pool, but had no effect on yields and P uptake of rice. By contrast, 8.25 kg P ha−1 per rice crop was generally adequate for grain yields of 2.5–3.0 t ha−1 and to maintain soil P pools.  相似文献   

5.
Genotypic differences in absorption or utilization of P might be exploited to improve efficiency of fertilizer use or to obtain higher productivity on P-deficient soils. The objective of this study was to evaluate responses by 75 genotypes of upland rice (Oryza sativa L.) to two soil P levels in two field experiments. In the first experiment, soil P levels (Mehlich 1) were 1.5 mg kg–1 and 5 mg kg–1, and in the second experiment, 3 mg kg–1 and 4.7 mg kg–1 of soil, respectively. Rice cultivars differed significantly in shoot dry matter production at flowering, grain yield, and plant P status. Based on a grain yield efficiency index, cultivars were classified as P-efficient or P-inefficient. Shoot dry matter was more sensitive to P-deficiency but was not related to grain yield. Phosphorus use efficiency was higher under the low P treatment. Phosphorus uptake was significantly correlated with dry matter, P concentration and P-efficiency ratio. Results of this study indicate that genetic differences in P-use efficiency exist among upland rice cultivars and may be exploited in breeding programs.Contribution from National Rice and Bean Research Center of EMBRAPA, Goiania, Goias, Brazil and Appalachian Soil and Water Conservation Research Laboratoy, Beckley, WV, USA.  相似文献   

6.
A distribution function of rice yield deviations from the mean was developed from field experiments with 555 plots at 16 sites in Zhejiang province, China, for three years. The deviation distribution in interval of 50kg/ha appeared as a symmetrical distribution with a high peak (Mean=0.279 [kg/ha], SD=240.686 [kg/ha]). Normality test using Kolmogrove-Smirnov test between the observed cumulative distribution and the normal cumulative distribution function indicates that the observed deviation distribution is not normal. An empirical exponential cumulative distribution function was developed. The distribution function was used to remove outliers during the development of a rice yield fertilizer response model, based on data from a non-replicated NPK field experiment.  相似文献   

7.
Field experiments were conducted in the 1984 and 1985 wet seasons to determine the effect of N fertilizer application method on15N balances and yield for upland rice (Oryza sativa L.) on an Udic Arguistoll in the Philippines. The test cultivars were IR43 and UPLRi-5 in 1984 and IR43 in 1985. Unrecovered15N in15N balances for 70 kg applied urea-N ha–1, which represented N fertilizer losses as gases and movement below 0.5 m soil depth, ranged from 11–58% of the applied N. It was lowest (11–13%) for urea split applied at 30 days after seeding (DS) and at panicle initiation (PI), and highest (27–58%) for treatments receiving basal urea in the seed furrows. In all treatments with basal-applied urea, most N losses occurred before 50 DS.Heavy rainfall in 1985 before rice emergence resulted in large losses of native soil N and fertilizer N by leaching and possibly by denitrification. During the week of seeding, when rainfall was 492 mm, 91 kg nitrate-N ha–1 disappeared from the 0.3-m soil layer in unfertilized plots. Although rainfall following the basal N application was less in 1984 than in 1985, the losses from basal applied urea-N were comparable in the two years. Daily rainfall of 20–25 mm on 3 of the 6 days following basal N application in 1984 may have created a moist soil environment favorable for ammonia volatilization.In both years, highest grain yield was obtained for urea split-applied at 30 DS and at PI. Delayed rather than basal application of N reduced losses of fertilizer N and minimized uptake of fertilizer N by weeds.  相似文献   

8.
9.
The MERES (Methane Emissions from Rice EcoSystems) simulation model was tested using experimental data from IRRI and Maligaya in the Philippines and from Hangzhou in China. There was good agreement between simulated and observed values of total aboveground biomass, root weight, grain yield, and seasonal methane (CH4) emissions. The importance of the contribution of the rice crop to CH4 emissions was highlighted. Rhizodeposition (root exudation and root death) was predicted to contribute about 380 kg C ha–1 of methanogenic substrate over the season, representing 37% of the total methanogenic substrate from all sources when no organic amendments were added. A further 225 kg C ha–1 (22%) was predicted to come from previous crop residues, giving a total of around 60% originating from the rice crop, with the remaining 41% coming from the humic fraction of the soil organic matter (SOM). Sensitivity analysis suggested that the parameter representing transmissivity to gaseous transfer per unit root length (r) was important in determining seasonal CH4 emissions. As this transmissivity increased, more O2 was able to diffuse to the rhizosphere, so that CH4 production by methanogens was reduced and more CH4 was oxidized by methanotrophs. These effects outweighed the opposing influence of increased rate of transport of CH4 through the plant, so that the overall effect was to reduce the amount of CH4 emitted over the season. Varying the root-shoot ratio of the crop was predicted to have little effect on seasonal emissions, the increased rates of rhizodeposition being counteracted by the increased rates of O2 diffusion to the rhizosphere. Increasing the length of a midseason drainage period reduced CH4 emissions significantly, but periods longer than 6–7 d also decreased rice yields. Organic amendments with low C/N were predicted to be more beneficial, both in terms of enhancing crop yields and reducing CH4 emissions, even when the same amount of C was applied. This was due to higher rates of immobilization of C into microbial biomass, removing it temporarily as a methanogenic substrate.  相似文献   

10.
Bean (Phaseolus vulgaris L.) is a major crop in Eastern and Southern Africa, but yields are low. Climbing bean is much more productive than bush bean and is gaining importance with small scale farmers. Our objectives were to: compare nutrient balances with climbing and bush bean in a grain sorghum (Sorghum bicolor L.) based crop rotation system; and to determine the effect of management alternatives on the productivity of the subsequent crop. Different yearly crop rotations alternating sorghum with another crop were compared over six seasons in the highland area of southwestern Uganda at a steeply sloping, terrace site with clayey, acidic soil. The rotation treatments were climbers, bush bean, non-nodulating bush bean, and wheat (Triticum aestivum L.) with the whole plant harvested, and climbers with only pods harvested. Yield of climbing bean exceeded bush bean yield by 120% over three seasons. Sorghum yielded most grain in the rotation with climbing bean where only pods were harvested, while yield did not differ for the other treatments. Nutrient balances were more negative for the climbing bean rotations than for bush bean rotation. Nitrogen derived from the atmosphere was estimated to be 40% of plant N for both climbing and bush bean using the difference method, but 57% using the15N abundance method. Of the total N removed in crop harvest over the six season period, a greater proportion was estimated to be derived from the atmosphere for the climbing bean rotations than for bush beans. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Incorporation of urea into puddled rice soils is known to reduce ammoniacal-N buildup in floodwater and the subsequent loss of N as ammonia. Little is known, however, about seasonal and temperature effects on the effectiveness of basal urea incorporation in puddled soils. A field experiment was conducted in northern Vietnam on an Aquic Ustifluvent in the spring season (February to June) and summer season (July to November) to determine the effect of the presence of floodwater and method of fertilizer incorporation on floodwater ammoniacal-N, floodwater urea-N, andpNH3 following urea application. During the 4 d following basal urea application, floodwater temperature at 1400 h was 7 to 15°C higher in summer (July) than that in spring (February), and floodwater pH at 1400 h was 0.5 to 1.0 higher in summer than that in spring. ThepNH3 was much higher in summer than that in spring, suggesting a high potential for ammonia volatilization in summer. The movement of transplanters through the field did not reducepNH3, irrespective of floodwater depth (0 or 5 cm) and season. Harrowing and subsequent transplanter movement partially reducedpNH3 in the summer;pNH3 reduction, however, was greater when floodwater depth was 0 rather than 5 cm during harrowing and transplanting. This partial reduction ofpNH3 in summer did not result in a corresponding increase in rice yield, presumably because N losses were only slightly reduced and because yield was constrained by additional factors, such as the adverse climate. In spring, the removal of floodwater before urea application and incorporation increased grain yield by 0.2 Mg ha–1, even thoughpNH3 was consistently low and was not reduced by urea incorporation. This result suggests that water management and tillage during basal urea application may influence rice growth and yield in ways other than reduced N loss.  相似文献   

12.
Five pot experiments were conducted with wheat and rice in a net house to study the effect of lime nitrogen (LN, contains about 55% calcium cyanamide) amendment rates on the efficiency of urea, the recovery urea-15N, the efficiency of the three nitrogen fertilizers(NF), on the efficiency of urea in the three soils, and on NO 3 - -N leaching from a flooded soil. A rate of LN-N of 5–8% of applied fertilizer N increased the recovery of labeled urea-N by 9.42%. The effect of LN on the efficiency of NF was urea > ammonium sulfate > ammonium chloride. Under flooded conditions, LN decreased NO 3 - formation and leaching.Responses of several crops to LN amended fertilizers were also studied in field experiments. At equal NPK applications, the efficiency of basal applications to rice, wheat, corn, potatoes, soybean, peanut, grapes, peaches, melon and watermelon were bette r with LN than without. Efficiency with a basal fertilizer for rice or wheat with LN were the same as with the same fertilizer without LN applied in split applications.  相似文献   

13.
Young tomato plants (Lycopersicon esculentum) grown in sand in a greenhouse and subjected to different fertilization regimes were used to test the effects of nitrogen availability on constitutive levels of phenolics and on constitutive and inducible activities of polyphenol oxidase and proteinase inhibitors. Theories that emphasize physiological constraints on the expression of phytochemicals predict an increase in levels of carbon-based allelochemicals under moderate nitrogen stress but predict, under the same conditions, an attenuation of chemical responses involving nitrogen-containing compounds such as proteinase inhibitors and polyphenol oxidase. We found that nitrogen availability had a strong effect on constitutive levels of phenolics; weaker effects on constitutive polyphenol oxidase activity, constitutive proteinase inhibitor activity, and inducible polyphenol oxidase activity; and no effect on inducible proteinase inhibitor activity. These results point to a need for the integration of theories that emphasize physiological influences on secondary metabolism with those that emphasize ecological influences on secondary metabolism and suggest that current theories of plant defense do not adequately account for enzymatic and proteinaceous defenses against arthropods.  相似文献   

14.
Recovery of phosphorus from monoammonium phosphate (MAP), diammonium phosphate (DAP) and triple superphosphate (TSP), at rates of 0, 15, 30, or 45 mg P kg–1 was determined in a pot experiment on a Calcaric Lithosol soil (21% CaCO3). At the 15 mg P kg–1 rate DAP was as effective as MAP and more effective than TSP in supplying P, but it was less effective than MAP and TSP at the higher rates of 30 and 45 mg P kg–1. At the two higher P rates residual bicarbonate extractable P was also significantly lower with DAP. Yield dry matter was not affected by the source of P.  相似文献   

15.
A field experiment was conducted on an acid sulfate soil in Thailand to determine the effect of N fertilization practices on the fate of fertilizer-N and yield of lowland rice (Oryza sativa L.). A delayed broadcast application of ammonium phosphate sulfate (16-20-0) or urea was compared with basal incorporation of urea, deep placement of urea as urea supergranules (USG), and amendment of urea with a urease inhibitor. Deep placement of urea as USG significantly reduced floodwater urea- and ammoniacal-N concentrations following N application but did not reduce N loss, as determined from an15N balance, in this experiment where runoff loss was prevented. The urease inhibitor, phenyl phosphorodiamidate (PPD), had little effect on floodwater urea- and ammoniacal-N, and it did not reduce N loss. The floodwater pH never exceeded 4.5 in the 7 days following the first N applications, and application of 16-20-0 reduced floodwater pH by 0.1 to 0.3 units below the no-N control. The low floodwater pH indicated that ammonia volatilization was unimportant for all the N fertilization practices. Floodwater ammoniacal-N concentrations following application of urea or 16-20-0 were greater on this Sulfic Tropaquept than on an Andaqueptic Haplaquoll with near neutral pH and alkaline floodwater. The prolonged, high floodwater N concentrations on this Sulfic Tropaquept suggested that runoff loss of applied N might be a potentially serious problem when heavy rainfall or poor water control follow N fertilization. The unaccounted-for15N in the15N balances, which presumably represented gaseous N losses, ranged from 20 to 26% of the applied N and was unaffected by urea fertilization practice. Grain yield and N uptake were significantly increased with applied N, but grain yield was not significantly affected by urea fertilization practice. Yield was significantly lower (P = 0.05) for 16-20-0 than for urea; however, this difference in yield might be due to later application of P and hence delayed availability of P in the 16-20-0 treatment.  相似文献   

16.
Effect of algicides on urea fertilizer efficiency in transplanted rice   总被引:1,自引:0,他引:1  
The effects of the algicides terbutryn and copper sulfate on the potential for reducing the gaseous loss of NH3 from urea applied to rice were examined in experiments with 2 methods of N fertilizer management, 2 or 3 N rates, and 3 algicide treatments. The experiments were conducted during the 1986 dry and wet seasons in an experimental field at Pila, Laguna, Philippines.Copper sulfate had little effect as an algicide at the rate used, but terbutryn immediately reduced algal growth. The populations of species resistant to terbutryn probably increased, but terbutryn had no long-term effect on the total number of colony-forming units of algae. There was some evidence that terbutryn reduced photodependent N2 fixation as estimated by acetylene reduction assay.Terbutryn, when applied with urea 10 days after transplanting, reduced the maximum floodwater pH by 0.9 units or more for 7 d in the DS and by about 0.5 units for 8 d in the WS. Terbutryn increased the ammoniacal-N (AN) concentration in the floodwater 100% or more in the DS and 60% in the WS. The combined effect of terbutryn on the floodwater pH and AN concentration was reduced photodependent NH3 partial pressure (NH3), about 25% in the DS and 38% in the WS. deceased  相似文献   

17.
Ding L  Qi L  Jing H  Li J  Wang W  Wang T 《Journal of chemical ecology》2008,34(11):1492-1500
Leukamenin E, an ent-kaurene diterpenoid isolated from Isodon racemosa (Hemsl) Hara, showed phytotoxic effects on root growth and root hair development of lettuce seedlings (Lactuca sativa L.). Lower concentrations (10 μM) of leukamenin E did not affect root growth, but at concentrations higher than 50 μM, the rate was inhibited. The influence of leukamenin E on root growth rate was closely correlated with alterations in the mitotic index. A low incidence of aberrant mitosis image was observed when lettuce roots were treated with higher concentrations (100 and 200 μM) of leukamenin E. This suggests that inhibition of root growth may be due to inhibition of cell division. All tested concentrations of the diterpenoid (10 μM or more) inhibited root hair development in a dose-dependent manner. At a concentration of 80 μM, leukamenin E completely blocked root hair initiation. Application of Ag+—an ethylene action inhibitor—to lettuce seedlings inhibited root hair elongation similar to the diterpenoid. Enhanced root hair length was stimulated by exogenous ethephon—an ethylene-releasing agent—and could be reversed by addition of leukamenin E. This suggests that leukamenin E may act as a potential ethylene action antagonist in the inhibition of lettuce root hair development. We conclude that leukamenin E may curb root hair development by interfering with ethylene action at concentrations above 10 μM and inhibits root growth via inhibition of cell division at concentrations above 50 μM. Lan Ding and Linlin Qi contributed equally to this work.  相似文献   

18.
The response of lentil grown under rainfed conditions to directly applied and residual phosphorus (P) was described by a modified Mitscherlich equation, accounting for the effects of rainfall on (1) potential yield, and (2) the availability of soil-P to the crop. The response of lentil yield to directly applied and residual P was studied in two-course cereal–lentil rotational trials under rainfed conditions in a Mediterranean-type environment. Cereal crops were grown at different P application rates during 4 growing seasons at 3 sites, representing different rainfall zones in northwest Syria. Lentil (Lens culinaris Med.) was grown during 4 seasons at the same sites, each lentil crop following a cereal crop. In 3 out of 4 lentil-growing seasons, additional P was applied to lentil in subplots to compare the residual and direct effects of P application. The initial contents of extractable soil-P (P-Olsen) were low at all sites, in the range of 2–5 ppm P. Under the conditions of the experiments, lentil appeared to benefit slightly more from P applied to the preceding wheat crop (residual P) than from directly applied P. It is shown that the modified Mitscherlich equation could be used as a basis for P fertilizer recommendations for rainfed farming. As for lentil, it was concluded that a single application of P to the wheat crop in a wheat/lentil rotation could reduce the cost of lentil production, without reducing lentil yield.  相似文献   

19.
Sorghum bicolor is an allelopathic crop that reduces the yield of succeeding crops. We have assessed its effect on the germination, emergence, and seedling growth of Arachis hypogea sown in soil that had had a prior sorghum cropping. A. hypogea was sown on rows and interrows of a previous sorghum crop in 1997 and 1998 in Senegal. Seedling establishment (germination rate and seedling weight) was better between rows than on rows of the previous crop. The highest concentrations of phenolic compounds occurred in the rows in 1998, while contents of row and interrow soils were similar in 1997. Vanillic acid was the main component of the six chemicals found in 1997 soils, whereas the 1998 soil samples contained mainly p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillic, and p-coumaric acids (10 phenolics identified). The germination of peanut seeds in water (control), soil water extracts, and mixtures of pure phenolics (equivalent to those in 1997 and 1998 soil samples) was tested. All extracts inhibited germination compared to controls, but there was no significant difference among treatments, i.e., the inhibition was the same for seeds in soil solutions and those in the respective phenolic mixtures. Similarly, there were no significant differences among the germination rates in soil water extracts of rows and interrows or in the pure phenolic mixtures of rows and interrows. We propose a geometrical sowing pattern for peanuts between the rows of the previous sorghum crop to escape the latter's "allelopathic heritage."  相似文献   

20.
Changes in soil organic N following fertilizer N applications are related to soil quality and subsequent N uptake by plants. Recovery of fertilizer N as organic N and soil microbial biomass N within two corn (Zea mays L.) fertilization systems was studied using15N on a Chicot soil (fine-loamy, mixed, frigid, Typic Hapludalf) and a Ste. Rosalie soil (fine, mixed, frigid, Typic Humanquept) in southwestern Quebec in 1989 and 1990. The two fertilization systems studied received a recommended rate of 170-44-131 kg (normal rate) and a high rate of 400-132-332 kg of N-P-K per hectare. Increasing fertilization rates above normal increased microbial biomass N immobilization with a subsequent greater N release. Higher fertilization rates significantly increased both the magnitude of soil microbial biomass N and microbial fertilizer N recovery in the soil microbial biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号