首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Raising and sustaining rice yields in the rainfed lowlands requires an understanding of nutrient inputs and outputs. On sandy lowland rice soils, managing phosphorus (P) supply is a key factor in achieving increased yields and sustainable production. Phosphorus inputs, rice yields, and crop P uptake were used to quantify P requirements of rice: together with results on soil P fractions, P balance sheets were constructed over five consecutive cropping seasons on a sandy Plinthustalf near Phnom Penh, Cambodia. Grain yields ranged from 665 to 1557 kg ha−1 with no added P. Average yields increased significantly with P fertiliser application over five consecutive crops by 117, 139 and 140% when the phosphate fertiliser was applied at 8.25, 16.5 and 33 kg P ha−1, respectively. Without added P fertiliser, a net loss of 1.2 kg P ha−1 per crop was estimated with straw return and 2.0 kg P ha−1 per crop with straw removed from the field, whereas, with added P fertiliser, there was a net P gain in the soil of 5.6 or 9.5 kg ha−1 per crop when straw was removed and returned to the soil, respectively. After one crop, the addition of P fertiliser significantly (P < 0.01) increased recovery in all soil P fractions. Across five successive crops, repeated application of 16.5 and 33 kg P ha−1 rates resulted in progressive P accumulation in the soil, especially a labile NaOH–Po pool, but had no effect on yields and P uptake of rice. By contrast, 8.25 kg P ha−1 per rice crop was generally adequate for grain yields of 2.5–3.0 t ha−1 and to maintain soil P pools.  相似文献   

2.
A long term field experiment was conducted for 8 years during 1994–2001 to evaluate the effect of N, P, K and Zn fertilizer use alone and in combination with gypsum, farmyard manure (FYM) and pressmud on changes in soil properties and yields of rice and wheat under continuous use of sodic irrigation water (residual sodium carbonate (RSC) 8.5 meq l−1, and sodium adsorption ratio (SAR) 8.8 (m mol/l)1/2 at Bhaini Majra experimental farm of Central Soil Salinity Research Institute, Karnal, India. Continuous use of fertilizer N alone (120 kg ha−1) or in combination with P and K significantly improved rice and wheat yields over control (no fertilizer). Phosphorus applied at the rate of 26 kg P ha−1 each to rice and wheat significantly improved the yields and led to a considerable build up in available soil P. When N alone was applied, available soil P and K declined from the initial level of 14.8 and 275 kg ha−1 to 8.5 and 250 kg ha−1 respectively. Potassium applied at a rate of 42 kg K ha−1 to both crops had no effect on yields. Response of rice to Zinc application occurred since 1997 when DTPA extractable Zn declined to 1.48 kg ha−1 from the initial level of 1.99 kg ha−1. Farmyard manure 10 Mg ha−1, gypsum 5 Mg ha−1 and pressmud 10 Mg ha−1 along with NPK fertilizer use significantly enhanced yields over NPK treatment alone. Continuous cropping with sodic water and inorganic fertilizer use for 8 years slightly decreased the soil pHe and SAR from the initial value of 8.6 and 29.0 to 8.50 and 18.7 respectively. However, treatments involving the use of gypsum, FYM and pressmud significantly decreased the soil pH and SAR over inorganic fertilizer treatments and control. Nitrogen, phosphorus and zinc uptake were far less than additions made by fertilizer. The actual soil N balance was much lower than the expected balance thereby indicating large losses of N from the soil. There was a negative potassium balance due to greater removal by the crops when compared to K additions. The results suggest that either gypsum or FYM/pressmud along with recommended dose of fertilizers must be used to sustain the productivity of rice – wheat system in areas having sodic ground water for irrigation.  相似文献   

3.
The sustainability of the productive rice-wheat systems of Northwest India is being questioned due to the complete removal of straw for animal consumption and fuel, or the burning of straw which has reduced the soil organic matter contents. However, straw incorporation at planting can temporarily reduce the availability of fertilizer-N and reduce crop yields. In a field study on a loamy sand soil, the effect of 6 mg ha−1 rice straw incorporated into the soil 20 or 40 days before sowing (DBS) the wheat was compared with removal or burning of rice straw on the fate and balance of 120 kg ha−1 of 5 atom% 15N-urea applied to wheat and to a following crop of rice. Wheat grain yield and agronomic efficiency (AE) of applied N (kg grain/kg N applied) were not influenced by rice straw management. However, N uptake (NU), and recovery efficiency (RE) of N by the difference method were lower with rice straw incorporation than with burning. Nitrogen-15 recovery by wheat was highest (41%) when the rice straw was removed or burned and lowest (30.4%) when 30 of the 120 kg N ha−1 was applied at the time of straw incorporation at 20 DBS of wheat. However, this strategy of adding 25% of the urea-N dose at the time of straw incorporation resulted in the highest 15N losses (45.2%). Inorganic N remaining at harvest in the 0 to 60 cm soil profile, mostly NO3 , was 5.5% after wheat and 4.2% after rice. Rice grain yields, NU, and RE were not influenced by rice straw management. Nitrogen-15 losses were similar in rice and wheat (31% with straw removed) despite total irrigation and rainfall inputs of 340 and 32 cm to rice and wheat, respectively. These results suggest to the farmers of northwest India that straw incorporation does not necessarily hurt grain yields, and indicates to researchers that work is still needed to improve N use efficiency in rice and wheat. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
A field experiment was conducted on a loamy sand soil for six years to quantify the effect of soil organic matter on indigenous soil N supply and productivity of irrigated wheat in semiarid sub-tropical India. The experiment was conducted by applying different combinations of fertilizer N (0–180 kg N ha−1), P (0–39 kg P ha−1) and K (0–60 kg K ha−1) to wheat each year. For the data pooled over years, fertilizer N together with soil organic carbon (SOC) and their interaction accounted for 75% variation in wheat yield. The amount of fertilizer N required to attain a yield goal decreased as the SOC concentration increased indicating enhanced indigenous soil N supply with an increase in SOC concentration. Besides SOC concentration, the soil N supply also depended on yield goal. For a yield goal of 4 tons ha−1, each ton of SOC in the 15 cm plough layer contributed 4.75 kg N ha−1 towards indigenous soil N supply. An increase in the soil N supply with increase in SOC resulted in enhanced wheat productivity. The contribution of 1 ton SOC ha−1 to wheat productivity ranged from 15 to 33 kg ha−1 across SOC concentration ranging from 3 to 9 g kg-1 soil. The wheat productivity per ton of organic carbon declined curvilinearly as the native SOC concentration increased. The change in wheat productivity with SOC concentration shows that the effect of additional C sequestration on wheat productivity will depend on the existing SOC concentration, being higher in low SOC soils. Therefore, it will be more beneficial to sequester C in soils with low SOC than with relatively greater SOC concentration. In situations where the availability of organic resources for recycling is limited, their application may be preferred in soils with low SOC concentration. The results show that an increase in C sequestration will result in enhanced wheat productivity but the increase will depend on the amount of fertilizer applied and the existing fertility level of the soil.  相似文献   

5.
Participatory on-farm trials were conducted for three seasons to assess the benefits of small rates of manure and nitrogen fertilizer on maize grain yield in semi-arid Tsholotsho, Zimbabwe. Two farmer resource groups conducted trials based on available amounts of manure, 3 t ha−1 (low resource group) and 6 t ha−1 (high resource group). Maize yields varied between 0.15 t ha−1 and 4.28 t ha−1 and both absolute yields and response to manure were strongly related to rainfall received across seasons (P < 0.001). The first two seasons were dry while the third season received above average rainfall. Maize yields within the seasons were strongly related to N applied (R 2 = 0.77 in season 1, and R 2 = 0.88 and 0.83 in season 3) and other beneficial effects of manure, possibly availability of cations and P. In the 2001–2002 season (total rainfall 478 mm), application of 3 and 6 t ha−1 of manure in combination with N fertilizer increased grain yield by about 0.14 and 0.18 t ha−1, respectively. The trend was similar for the high resource group in 2002–2003 although the season was very dry (334 mm). In 2003–2004, with good rainfall (672 mm), grain yields were high even for the control plots (average 1.2 and 2.7 t ha−1). Maize yields due to manure applications at 3 and 6 t ha−1 were 1.96 and 3.44 t ha−1, respectively. Application of 8.5 kg N ha−1 increased yields to 2.5 t ha−1 with 3 t ha−1 of manure, and to 4.28 t ha−1 with 6 t ha−1 of manure. In this area farmers do not traditionally use either manure or fertilizer on their crops, but they actively participated in this research during three consecutive seasons and were positive about using the outcomes of the research in future. The results showed that there is potential to improve livelihoods of smallholder farmers through the use of small rates of manure and N under semi-arid conditions.  相似文献   

6.
Major challenges for combined use of organic and mineral nutrient sources in smallholder agriculture include variable type and quality of the resources, their limited availability, timing of their relative application and the proportions at which the two should be combined. Short-term nutrient supply capacity of five different quality organic resources ranging from high to low quality, namely Crotalaria juncea, Calliandra calothyrsus, cattle manure, maize stover and Pinus patula sawdust were tested in the field using maize as a test crop. The study was conducted on two contrasting soil types at Makoholi and Domboshawa, which fall under different agro-ecological regions of Zimbabwe. Makoholi is a semi-arid area (<650 mm yr−1) with predominantly coarse sandy soils containing approximately 90 g kg−1 clay while Domboshawa (>750 mm yr−1) soils are sandy-clay loams with 220 g kg−1 clay. Each organic resource treatment was applied at low (2.5 t C ha−1) and high (7.5 t C ha−1) biomass rates at each site. Each plot was sub-divided into two with one half receiving 120 kg N ha−1 against zero in the other. At Makoholi, there was a nine-fold increase in maize grain yield under high application rates of C. juncea over the unfertilized control, which yielded only 0.4 t ha−1. Combinations of mineral N fertilizer with the leguminous resources and manure resulted in between 24% and 104% increase in grain yield against sole fertilizer, implying an increased nutrient recovery by maize under organic–mineral combinations. Maize biomass measured at 2 weeks after crop emergence already showed treatment differences, with biomass yields increasing linearly with soil mineral N availability (R 2 = 0.75). This 2-week maize biomass in turn gave a positive linear relationship (R 2 = 0.82) with grain yield suggesting that early season soil mineral N availability largely determined final yield. For low quality resources of maize stover and sawdust, application of mineral N fertilizer resulted in at least a seven-fold grain yield increase compared with sole application of the organic resources. Such nutrient combinations resulted in grain harvest indices of between 44% and 48%, up from a mean of 35% for sole application, suggesting the potential of increasing maize productivity from combinations of low quality resources with mineral fertilizer under depleted sandy soils. At Domboshawa, grain yields averaged 7 t ha−1 and did not show any significant treatment differences. This was attributed to relatively high levels of fertility under the sandy-clay loams during this first year of the trial implementation. Differences in N supply by different resources were only revealed in grain and stover uptake. Grain N concentration from the high quality leguminous resources averaged 2% against 1.5% from sawdust treatments. We conclude that early season soil mineral N availability is the primary regulatory factor for maize productivity obtainable under poor sandy soils. Maize biomass at 2 weeks is a potential tool for early season assessment of potential yields under constrained environments. However, the likely impact on system productivity following repeated application of high N-containing organic materials on different soil types remains poorly understood.  相似文献   

7.
The effects of 18 years continuous cropping of irrigated rice on soil and yields were studied in two long-term fertility experiments (LTFE) at Ndiaye and Fanaye in the Senegal River Valley (West Africa). Rice was planted twice in a year during the hot dry season (HDS) and wet season (WS) with different fertilizer treatments. Soil organic carbon (SOC) under fallow varied from 7.1 g kg−1 at Fanaye to 11.0 g kg−1 at Ndiaye. Rice cropping maintained and increased SOC at Ndiaye and Fanaye, respectively and fertilizer treatments did not affect SOC. Soil available P and exchangeable K were maintained or increased with long-term application of NPK fertilizers. Without any fertilizer, yields decreased by 60 kg ha−1 (1.5%) and 115 kg ha−1 (3%) per year at Fanaye and Ndiaye, respectively. The highest annual yield decreases of 268 kg ha−1 (3.6%) and 277 kg ha−1 (4.1%) were observed at Fanaye and Ndiaye, respectively when only N fertilizer was applied. Rice yields were only maintained with NPK fertilizers supplying at least 60 kg N, 26 kg P and 50 kg K ha−1. It was concluded that the double cropping of irrigated rice does not decrease SOC and the application of the recommended doses of NPK fertilizer maintained rice yields for 18 years.  相似文献   

8.
The effect of annual banding of superphosphate (0–45 kg P ha−1) on soil phosphorus (P) content, growth, and yield of wheat was investigated from 1982 to 1998 in a major rainfed wheat production area of South Africa. Conventional tillage practices in a wheat monoculture cropping system were followed under summer rainfall conditions. The responses of wheat growth to fertilizer P application were evident during early and late tillering growth stages, with decreased responses towards maturity. Although average yields varied between cropping seasons (0.881 to 3.261 t ha−1) due to climatic conditions, significant exponential response patterns between yield and fertilizer P applications existed. Optimum yields were achieved with P applications of 10 to 15 kg P ha−1. The recovery of fertilizer P in the grain decreased with increasing P applications. Results of soil P analyses and calculated P balance indicated a more rapid increase in soil P content with application of fertilizer P at levels above 20 kg P ha−1, with gradual increases occurring at lower levels. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Due to increased population pressure and limited availability of fertile land, farmers on desert fringes increasingly rely on marginal land for agricultural production, which they have learned to rehabilitate with different technologies for soils and water conservation. One such method is the indigenous zai technique used in the Sahel. It combines water harvesting and targeted application of organic amendments by the use of small pits dug into the hardened soil. To study the resource use efficiency of this technique, experiments were conducted 1999–2000, on-station at ICRISAT in Niger, and on-farm at two locations on degraded lands. On-station, the effect of application rate of millet straw and cattle manure on millet dry matter production was studied. On-farm, the effects of organic amendment type (millet straw and cattle manure, at the rate of 300 g per plant) and water harvesting (with and without water harvesting) on millet grain yield, dry matter production, and water use were studied. First, the comparison of zai vs. flat planting, both unamended, resulted in a 3- to 4-fold (in one case, even 19-fold) increase in grain yield on-farm in both years, which points to the yield effects of improved water harvesting in the zai alone. Zai improved the water use efficiency by a factor of about 2. The yields increased further with the application of organic amendments. Manure resulted in 2–68 times better grain yields than no amendment and 2–7 times better grain yields than millet straw (higher on the more degraded soils). Millet dry matter produced per unit of manure N or K was higher than that of millet straw, a tendency that was similar for all rates of application. Zai improved nutrient uptake in the range of 43–64% for N, 50–87% for P and 58–66% for K. Zai increased grain yield produced per unit N (8 vs. 5 kg kg−1) and K (10 vs. 6 kg kg−1) compared to flat; so is the effect of cattle manure compared to millet straw (9 vs. 4 kg kg−1, and 14 vs. 3 kg kg−1), respectively, Therefore zai shows a good potential for increasing agronomic efficiency and nutrient use efficiency. Increasing the rate of cattle manure application from 1 to 3 t ha−1 increased the yield by 115% TDM, but increasing the manure application rate further from 3 to 5 t ha−1 only gave an additional 12% yield increase, which shows that optimum application rates are around 3t ha−1.  相似文献   

10.
Long-term use of soil, crop residue and fertilizer management practices may affect some soil properties, but the magnitude of change depends on soil type and climatic conditions. Two field experiments with barley, wheat, or canola in a rotation on Gray Luvisol (Typic Cryoboralf) loam at Breton and Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, were conducted to determine the effects of 19 or 27 years (from 1980 to 1998 or 2006 growing seasons) of tillage (zero tillage [ZT] and conventional tillage [CT]), straw management (straw removed [SRem] and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha−1 in SRet, and 0 kg N ha−1 in SRem plots) on pH, extractable P, ammonium-N and nitrate–N in the 0–7.5, 7.5–15, 15–30 and 30–40 cm or 0–15, 15–30, 30–60, 60–90 and 90–120 cm soil layers. The effects of tillage, crop residue management and N fertilization on these chemical properties were usually similar for both contrasting soil types. There was no effect of tillage and residue management on soil pH, but application of N fertilizer reduced pH significantly (by up to 0.5 units) in the top 15 cm soil layers. Extractable P in the 0–15 cm soil layer was higher or tended to be higher under ZT than CT, or with SRet than SRem in many cases, but it decreased significantly with N application (by 18.5 kg P ha−1 in Gray Luvisol soil and 20.5 kg P ha−1 in Black Chernozem soil in 2007). Residual nitrate–N (though quite low in the Gray Luvisol soil in 1998) increased with application of N (by 17.8 kg N ha−1 in the 0–120 cm layer in Gray Luvisol soil and 23.8 kg N ha−1 in 0–90 cm layer in Black Chernozem soil in 2007) and also indicated some downward movement in the soil profile up to 90 cm depth. There was generally no effect of any treatment on ammonium-N in soil. In conclusion, elimination of tillage and retention of straw increased but N fertilization decreased extractable P in the surface soil. Application of N fertilizer reduced pH in the surface soil, and showed accumulation and downward leaching of nitrate–N in the soil profile.  相似文献   

11.
Low yields and high risk characterize many rain-fed lowland rice environments, including those in Laos. Drought and fluctuating soil-water conditions (from aerobic to anaerobic states) can limit productivity and the efficient use of applied nutrients. Although addition of organic matter may improve the efficiency of fertilizer use, on-farm residues, for example farmyard manure (FYM), rice straw and rice hulls, are, currently, poorly utilized in these systems. Single and multi-year experiments were designed to evaluate the effect of these residues on rice productivity and efficiency of fertilizer use at four sites. Rice yield without fertilizer but with addition of residues ranged from 1.1 to 1.7 t ha−1 across sites and years. In response to fertilizer, yields increased on average by 1.4 t ha−1. For all sites and years there was a significant response of yield to organic residues applied without fertilizer, with responses ranging from 0.2 to 1.4 t ha−1. In 58% of cases there was no residue×fertilizer interaction (benefits of residues when applied with fertilizer were additive). In 38 and 4% of cases the interaction was negative (no response to residues if fertilizer was already applied) or positive (synergistic), respectively. In the multi-year studies, the type of interaction varied between years, suggesting that seasonal events, rather than soil type, determine the type of interaction. The greatest benefits of applying organic and chemical fertilizers together were observed in years when soil-water conditions were unfavorable (fluctuating anaerobic–aerobic conditions). The long-term effects of these different management strategies on soil nutrient balances suggest that N, P, and K balances were maintained as a result of balanced commercial fertilizer management but that addition of residues further enhanced these balances. All residues, when applied alone, resulted in positive soil Si balances; only with FYM were long-term N, P, and K balances maintained or positive, however. For resource-poor farmers, applying on-farm residues can be a sustainable approach to increasing productivity.  相似文献   

12.
Soil, crop and fertilizer management practices may affect the amount and quality of organic C and N in soil. A long-term field experiment (growing barley, wheat, or canola) was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 (1980 to 1998) or 27 years (1980 to 2006) of tillage (zero tillage [ZT] and conventional tillage [CT]), straw management (straw removed [SRem]and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha−1 in SRet and 0 kg N ha−1 in SRem plots) on total organic C (TOC) and N (TON), and light fraction organic C (LFOC) and N (LFON) in the 0–7.5 and 7.5–15 cm or 0–5, 5–10 and 10–15 cm soil layers. The mass of TOC and TON in soil was usually higher in SRet than in SRem treatment (by 3.44 Mg C ha−1 for TOC and 0.248 Mg N ha−1 for TON after 27 years), but there was little effect of tillage and N fertilization on these parameters. The mass of LFOC and LFON in soil tended to increase with SRet (by 285 kg C ha−1 for LFOC and 12.6 kg N ha−1 for LFON with annual rate of 100 kg N ha−1 for 27 years), increased with N fertilizer application (by 517 kg C ha−1 for LFOC and 36.0 kg N ha−1 for LFON after 27 years), but was usually higher under CT than ZT (by 451 kg C ha−1 for LFOC and 25.3 kg N ha−1 for LFON after 27 years). Correlations between soil organic C or N fractions were highly significant in most cases. Linear regressions between crop residue C input and soil organic C or N were significant in most cases. The effects of tillage, straw management and N fertilizer on soil were more pronounced for LFOC and LFON than TOC and TON, and also in the surface layers than in the deeper layers. Tillage and straw management had little or no effect on C:N ratios, but the C:N ratios in light organic fractions significantly decreased with increasing N rate (from 20.06 at zero-N to 18.91 at 100 kg N ha−1). Compared to the 1979 results, in treatments that did not receive N fertilizer (CTSRem0, CTSRet0, ZTSRem0 and ZTSRet0), CTSRem0 resulted in a net decrease in TOC concentration (by 1.9 g C kg−1) in the 0–15 cm soil layer in 2007 (after 27 years), with little or no change in the CTSRet0 and ZTSRem0 treatments, while there was a net increase in TOC concentration (by 1.2 g C kg−1) in the ZTSRet0 treatment. Straw retention and N fertilizer application at 50 and 100 kg N ha−1 rates showed a net positive effect on TOC concentration under both ZT (ZTSRet50 by 2.3 g C kg−1 and ZTSRet100 by 3.1 g C kg−1) and CT (CTSRet50 by 3.5 g C kg−1 and CTSRet100 by 1.6 g C kg−1) treatments in 2007 compared to 1979 data. In conclusion, the findings suggest that retention of straw, application of N fertilizer and elimination of tillage would improve soil quality, and this might increase the potential for N supplying power of the soil and sustainability of crop productivity.  相似文献   

13.
Understanding mulching influences on nitrogen (N) activities in soil is important for developing N management strategies in dryland. A 3 year field experiment was conducted in the Loess Plateau of China to investigate the effects of mulching, N fertilizer application rate and plant density on winter wheat yield, N uptake by wheat and residual soil nitrate in a winter wheat-fallow system. The split plot design included four mulching methods (CK, no mulch; SM, straw mulch; FM, plastic film mulch; CM, combined mulch with plastic film and straw) as main plot treatments. Three N fertilizer rates (N0, 0 kg N ha−1; N120, 120 kg N ha−1; N240, 240 kg N ha−1) were sub-plot treatments and two wheat sowing densities (LD, low density, seeding rate = 180 kg ha−1; HD, high density, seeding rate = 225 kg ha−1) were sub-subplot treatments. The results showed that wheat yield, N uptake, and N use efficiency (NUE) were higher for FM and CM compared to CK. However, soil nitrate-N contents in the 0–200 cm soil profile were also higher for FM and CM compared to CK after the 3 year experiment. Wheat grain yields were higher for SM compared to CK only when high levels of nitrogen or high planting density were applied. Mulching did not have a significant effect on wheat yield, nitrogen uptake and NUE when soil water content at planting was much high. Wheat yield, N uptake, and residual nitrate in 0–200 cm were significantly higher for N240 compared to N120 and N0. Wheat yield and N uptake were also significantly higher for HD compared to LD. When 0 or 120 kg N ha−1 was applied, HD had more residual nitrate than LD while the reverse was true when 240 kg N ha−1 was applied. After 3 years, residual nitrate-N in 0–200 cm soil averaged 170 kg ha−1, which was equivalent to ~40% of the total N uptake by wheat in the three growing seasons.  相似文献   

14.
Application of higher levels (60 and 90 kg N ha–1) of nitrogen fertilizer (Urea) inhibited the growth ofAzolla pinnata (Bangkok) and blue-green algae (BGA) though the reduction was more in BGA thanAzolla. Inoculation of 500 kg ha–1 of freshAzolla 10 days after transplanting (DAT) in the rice fields receiving 30, 60 and 90 kg N ha–1 as urea produced an average of 16.5, 15.0 and 13.0 t ha–1 fresh biomass ofAzolla at 30 DAT, which contained 31, 31 and 27 kg N ha–1, respectively. The dry mixture of BGA (60%Aulosira, 35%Gloeotrichia and 5% other BGA on fresh weight basis) inoculated in rice field 3 DAT at a rate of 10 kg ha–1 showed a mat formation at 80 DAT with an average fresh biomass of 8.0, 5.8 and 4.2 t ha–1 containing 22, 17 and 12 kg N ha–1, respectively with those N fertilizer doses.Application ofAzolla showed positive responses to rice crop by increasing the panicle number and weight, grain and straw yields and nitrogen uptake in rice significantly at all the levels of chemical nitrogen. But, the BGA inoculation had a significant effect on the grain and straw yields only during the dry season in the treatment where 30 kg N was applied. During the wet season and in the other treatments performed during the dry season no significant increase in yields, yield components and N uptake were observed with BGA.The intercropping ofAzolla and rice in combination with 30, 60 and 90 kg N ha–1 as urea showed the yields, yield attributes and nitrogen uptake in rice at par with those obtained by applying 60, 90 and 120 kg N ha–1 as urea, respectively but, the BGA did not. The analysis of soil from rice field after harvest showed thatAzolla and BGA intercropping with rice in combination with chemical fertilizer significantly increased the organic carbon, available phosphorus and total nitrogen of soil.  相似文献   

15.
In the aerobic rice system, adapted rice cultivars are grown in non-flooded moist soil. Aerobic rice may be suitable for double cropping with winter wheat in the Huai River Basin, northern China plain. Field experiments in 2005 and 2006 were conducted to study the response of aerobic rice and winter wheat to sequential rates of nitrogen (N), phosphorus (P) and potassium (K) in aerobic rice—winter wheat (AR-WW) and winter wheat—aerobic rice (WW-AR) cropping sequences. Fertilizer treatments consisted of a complete NPK dose, a PK dose (N omission), a NK dose (P omission), a NP dose (K omission), and a control with no fertilizer input. Grain yields of crops with a complete NPK dose ranged from 3.7 to 3.8 t ha−1 and from 6.6 to 7.1 for aerobic rice’ and ‘winter wheat’, respectively. N omissions caused yield reductions ranging from 0.5 to 0.8 t ha−1 and from 1.6 to 4.3 t ha−1 for rice and wheat, respectively. A single omission of P or K did not reduce rice and wheat yields, but a cumulative omission of P or K in a double cropping system significantly reduced wheat yields by 1.2–1.6 t ha−1. N, P and K uptake of both crops were significantly influenced by fertilizer applications and indigenous soil nutrient supply. Nutrient omissions in a preceding crop reduced plant N and K contents and uptake additionally to direct effects of the fertilizer treatments in wheat, but not in rice. Apparent nutrient recoveries (ANR) differed strongly between ‘aerobic rice’ and ‘winter wheat’; in rice: for N it ranged from 0.30 to 0.32, for P from 0.01 to 0.06, and for K from 0.03 to 0.19 and in wheat: for N from 0.49 to 0.71, for P from 0.09 to 0.15, and for K from 0.26 to 0.31. Further improvements of crop productivity as well as nutrient-use efficiencies, should be brought about by developing cropping systems, by an appropriate choice of adapted cultivars, by a site- and time-specific fertilizer management and by eliminating other yield-limiting factors. It is concluded that nutrient recommendations should not be based on the yield response of single crops only, but also on the after-effects on nutrient availability for succeeding crops. A whole cropping system approach is needed.  相似文献   

16.
Field experiments were conducted in Central Thailand under a rice–fallow–rice cropping sequence during consecutive dry and wet seasons of 1998 to determine the impact of residue management on fertilizer nitrogen (N) use. Treatments consisted of a combination of broadcast urea (70 kg N ha–1) with rice straw (C/N 67) and rice hull ash (C/N 76), which were incorporated into the puddled soil 1 week before transplanting at a rate of 5 Mg ha–1. Nitrogen-15 balance data showed that the dry season rice recovered 10 to 20% of fertilizer N at maturity. Of the applied N, 27 to 36% remained in the soil. Loss of N (unaccounted for) from the soil–plant system ranged from 47 to 54% of applied N. The availability of the residue fertilizer N to a subsequent rice crop was only less than 3% of the initial applied N. During both season fallows NO3-N remained the dominant form of mineral-N (NO3+NH4) in the aerobic soil. In the dry season grain yield response to N application was significant (P=0.05). Organic material sources did not significantly change grain yield and N accumulation in rice. In terms of grain yields and N uptake at maturity, there was no significant residual effect of fertilizer N on the subsequent rice crop. The combined use of organic residues with urea did not improve N use efficiency, reduced N losses nor produced higher yields compared to urea alone. These results suggested that mechanisms such as N loss through gaseous N emissions may account for the low fertilizer N use efficiency from this rice cropping system. Splitting fertilizer N application should be considered on the fertilizer N use from the organic residue amendment.  相似文献   

17.
Nitrogen use efficiency (NUE) in rice is low due to the inefficient management of fertilizer N by farmers. We evaluated a leaf color chart (LCC) as a simple tool for improving the time and rate of N fertilizer use in farmers’ fields for 4 years (2000–2003) in irrigated rice in northwestern India. Application of N fertilizer whenever leaf greenness was less than shade 4 on the LCC (the critical LCC value) produced rice grain yields on a par with blanket recommendation of applying 120 kg N ha−1 in three equal splits in different years, but it resulted in an average saving of 26% fertilizer N across villages and seasons. In most situations, there was no significant advantage of applying 20 kg N ha−1 as basal N at transplanting on grain yield and NUE of rice compared with no basal N. Use efficiencies of fertilizer N were higher when N was applied using LCC with a critical value of 4 than the recommended practice of applying 120 kg N ha−1 in three equal split doses on all sites and in all years. The LCC with a critical value of 4 for real-time N management can be efficiently used to increase NUE in all types of inbred rice cultivars presently popular with the farmers of the Indian Punjab. The LCC is a cheap and easy-to-use tool that allows real-time N management by farmers on a large area leading to improved fertilizer N use efficiency, and reduced risks associated with fertilizer N application.  相似文献   

18.
Soil organic matter (SOM), besides influencing carbon (C) transfer between soils and atmosphere, impacts soil functional ability and its response to environmental and anthropogenic influences. We studied the impact of continuous application of rice straw and farmyard manure (FYM) either alone or in conjunction with inorganic fertilizers on aggregate stability and distribution of C and nitrogen (N) in different aggregate fractions after 7 years of rice–wheat cropping on a sandy loam soil. Macroaggregates (>0.25 mm) constituted 32.5–54.5% of total water stable aggregates (WSA) and were linearly related (R 2 = 0.69) to soil organic carbon content. The addition of rice straw and FYM significantly (P < 0.05) improved the formation of macroaggregates with a concomitant decrease in the proportion of microaggregates at all the three sampling depths (0–5, 5–10 and 10–15 cm). Macroaggregates had higher C and N density as compared to microaggregates. Application of rice straw and FYM improved C and N density in different aggregate sizes and the improvement was greatest in plots that received both rice straw and FYM each year. Application of FYM along with inorganic fertilizer resulted in a net C sequestration of 0.44 t ha−1 in the plough layer after 7 years of rice–wheat cropping. Carbon sequestration was greater (1.53 t ha−1) when both rice straw and FYM along with inorganic fertilizers were applied annually. It is concluded that addition of rice straw and FYM in rice–wheat system improves soil aggregation and enhances C and N sequestration in macroaggregates. This will help in sustainable rice–wheat productivity in the region.  相似文献   

19.
Development of a sustainable and environment friendly crop production system depends on identifying effective strategies for the management of tillage and postharvest crop residues. Three-year (2004–2007) field study was initiated on two soil types to evaluate the effect of straw management (burning, incorporation and surface mulch) and tillage (conventional tillage and zero tillage) before sowing wheat and four nitrogen rates (0, 90, 120 and 150 kg N ha−1) on crop yields, N use efficiency, and soil fertility in the northwestern India. Effect of tillage and straw management on nitrogen transformation in soils was investigated in a laboratory incubation study. In sandy loam, grain yield of wheat with straw mulch-zero-till (ZT) was 7% higher compared to when residues were burnt-ZT but it was similar to straw burnt-conventional till (CT), averaged across 3 years. In silt loam, grain yield of wheat with straw mulch-ZT was 4.4% higher compared to straw incorporated-CT, but it was similar to straw burnt-CT. Response to N application was generally observed up to 150 kg N ha−1 except in 2004–2005 on sandy loam where N response was observed up to 120 kg N ha−1, irrespective of straw and tillage treatments. In sandy loam, RE was lower (49%) for straw burnt-ZT than in other treatments (54–56%). In silt loam, RE was higher in straw mulch-ZT compared with straw incorporation-CT (65 vs. 58%). In sandy loam, AE was higher in straw burnt-CT and straw mulch-ZT compared with the other treatments (19.2 vs. 16.9 kg grain kg−1 N applied). In silt loam, AE was lower in straw incorporation-CT than in other treatments (16.0 vs. 17.6 kg grain kg−1 N applied). Rice yield and N uptake were not influenced by straw and tillage management treatments applied to the preceding wheat. Recycling of rice residue (incorporation and surface mulch) compared with straw burning increased soil organic carbon and the availability of soil P and K. There was more carbon sequestration in rice straw mulch with zero tillage (25%) than in straw incorporation with conventional tillage (17%). Soil N mineralization at 45 days after incubation was 15–25% higher in straw retention plots compared with on straw burnt plots.  相似文献   

20.
Smallholder land productivity in drylands can be increased by optimizing locally available resources, through nutrient enhancement and water conservation. In this study, we investigated the effect of tillage system, organic resource and chemical nitrogen fertilizer application on maize productivity in a sandy soil in eastern Kenya over four seasons. The objectives were to (1) determine effects of different tillage-organic resource combinations on soil structure and crop yield, (2) determine optimum organic–inorganic nutrient combinations for arid and semi-arid environments in Kenya and, (3) assess partial nutrient budgets of different soil, water and nutrient management practices using nutrient inflows and outflows. This experiment, initiated in the short rainy season of 2005, was a split plot design with 7 treatments involving combinations of tillage (tied-ridges, conventional tillage and no-till) and organic resource (1 t ha−1 manure + 1 t ha−1 crop residue and; 2 t ha−1 of manure (no crop residue) in the main plots. Chemical nitrogen fertilizer at 0 and 60 kg N ha−1 was used in sub-plots. Although average yield in no-till was by 30–65% lower than in conventional and tied-ridges during the initial two seasons, it achieved 7–40% higher yields than these tillage systems by season four. Combined application of 1 t ha−1 of crop residue and 1 t ha−1 of manure increased maize yield over sole application of manure at 2 t ha−1 by between 17 and 51% depending on the tillage system, for treatments without inorganic N fertilizer. Cumulative nutrients in harvested maize in the four seasons ranged from 77 to 196 kg N ha−1, 12 to 27 kg P ha−1 and 102 to 191 kg K ha−1, representing 23 and 62% of applied N in treatments with and without mineral fertilizer N respectively, 10% of applied P and 35% of applied K. Chemical nitrogen fertilizer application increased maize yields by 17–94%; the increases were significant in the first 3 seasons (P < 0.05). Tillage had significant effect on soil macro- (>2 mm) and micro-aggregates fractions (<250 μm >53 μm: P < 0.05), with aggregation indices following the order no-till > tied-ridges > conventional tillage. Also, combining crop residue and manure increased large macro-aggregates by 1.4–4.0 g 100 g−1 soil above manure only treatments. We conclude that even with modest organic resource application, and depending on the number of seasons of use, conservation tillage systems such as tied-ridges and no-till can be effective in improving crop yield, nutrient uptake and soil structure and that farmers are better off applying 1 t ha−1 each of crop residue and manure rather than sole manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号