首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were determined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H2 g−1 starch and a specific hydrogen production rate of 32.1 ml H2 g−1 h−1.  相似文献   

2.
This study investigated the effects of seed sludges, alkalinity and HRT on the thermophilic fermentative hydrogen production from cassava stillage. Five different kinds of sludges were used as inocula without any pretreatment. Though batch experiments showed that mesophilic anaerobic sludge was the best inoculum, the hydrogen yields with different seed sludges were quite similar in continuous experiments in the range of 82.9–92.3 ml H2/gVS without significant differences which could be attributed to the establishment of Uncultured Thermoanaerobacteriaceae bacterium-dominant microbial communities in all reactors. It is indicated that results obtained from batch experiments are not consistent with those from continuous experiments and all the tested seed sludges are good sources for continuous thermophilic hydrogen production from cassava stillage. The influent alkalinity of 6 g NaHCO3/L and HRT 24 h were optimal for hydrogen production with hydrogen yield of 76 ml H2/gVS and hydrogen production rate of 3215 ml H2/L/d. Butyrate was the predominant metabolite in all experiments. With the increase in alkalinity of more than 6 g/L, the concentration of VFA/ethanol increased while hydrogen yield decreased due to the higher concentration of acetate and propionate. The decrease in HRT resulted in the higher hydrogen production rate but lower hydrogen yield. Variation of hydrogen yields were quite correlated with butyrate/acetate (B/A) ratio with different influent alkalinities, however, butyrate was important parameter to justify the hydrogen yields with various HRTs.  相似文献   

3.
Immobilized Clostridium butyricum TISTR 1032 on sugarcane bagasse improved hydrogen production rate (HPR) approximately 1.2 times in comparison to free cells. The optimum conditions for hydrogen production by immobilized C. butyricum were initial pH 6.5 and initial sucrose concentration of 25 g COD/L. The maximum HPR and hydrogen yield (HY) of 3.11 L H2/L substrate·d and 1.34 mol H2/mol hexose consumed, respectively, were obtained. Results from repeated batch fermentation indicated that the highest HPR of 3.5 L H2/L substrate·d and the highest HY of 1.52 mol H2/mol hexose consumed were obtained at the medium replacement ratio of 75% and 50% respectively. The major soluble metabolites in both batch and repeated batch fermentation were butyric and acetic acids.  相似文献   

4.
Waste activated sludge (WAS) is the most favorable inoculum for dark fermentative hydrogen-producing processes, because it can be collected economically. In order to accelerate the start-up process and develop the efficiency and stability of a hydrogen production system, pretreatment of the seed sludge has been examined to enrich hydrogen-producing bacteria. Six pretreatment methods including acid, base, heat-shock, aeration, chloroform and 2-bromoethanesulfonate (BES) were performed on WAS in batch cultures utilizing glucose as the substrate. The results showed that, at 35 °C and initial pH of 7.0, hydrogen yields of the pretreated sludge (except for BES) were higher than the control test. The pretreatment methods resulted in different distributions of soluble metabolites. Acid pretreatment at pH of 3 was the best among all six pretreatment methods, and the maximal hydrogen yield of 1.51 mol/mol-glucose-consumed and the maximal specific hydrogen production of 22.81 mmolH2/g VSS were observed. The hydrogen yield of the acid treated sludge increased to 1.82 mol/mol-glucose-consumed after five repeated-batch cultivations. It was concluded that acid pretreatment is a simple, economic and effective method for enriching hydrogen-producing bacteria from WAS.  相似文献   

5.
Five individual pretreatment methods (heat, ultrasonic, ultraviolet, acid, and base) were performed on two typical seed sludges (river sediments and anaerobic granular sludge) to evaluate their effectiveness on enriching efficient hydrogen (H2)-producing bacteria and enhancing H2 production using corn stover hydrolyzate. Results indicated that pretreatment processes caused more remarkable improvements for river sediments than anaerobic granular sludge. Among the five protocols, heat pretreatment reached high H2 yield for both river sediments (4.17 mmol H2/g utilized sugar) and anaerobic granular sludge (2.84 mmol H2/g utilized sugar). Ultraviolet and ultrasonic pretreatments were conditionally effective for river sediments and anaerobic granular sludge, respectively. In most cases, pretreatment processes altered soluble metabolites distribution towards more acetate and less ethanol production. Microbial community analysis indicated that heat and ultrasonic pretreatments can respectively lead to significant and indistinctive change on original microbial community. Besides frequently detected Escherichia spp., Serratia spp., and Klebsiella spp., some species of Clostridium spp. and Bacillus spp. might be efficient H2 producer responsible for better H2-producing performances.  相似文献   

6.
In this study, hydrogen production with activated sludge, a diverse bacterial source has been investigated and compared to microflora from anaerobic digester sludge, which is less diverse. Batch experiments were conducted at mesophilic (37 °C) and thermophilic (55 °C) temperatures. The hydrogen production yields with activated sludge at 37 °C and 55 °C were 0.56 and 1.32 mol H2/mol glucose consumed, respectively. While with anaerobically digested sludge hydrogen yield was 2.18 mol H2/mol glucose consumed at 37 °C and 1.25 mol H2/mol glucose consumed at 55 °C. The results of repeated batch experiments for 615 h resulted in average yields of 1.21 ± 0.62 and 1.40 ± 0.16 mol H2/mol glucose consumed for activated sludge and anaerobic sludge, respectively. The hydrogen production with activated sludge was not stable during the repeated batches and the fluctuation in hydrogen production was attributed to formation of lactic acid as the predominant metabolite in some batches. The presence of lactic acid bacteria in microflora was confirmed by PCR-DGGE.  相似文献   

7.
Hydrogen production from Arthrospira (Spirulina) platensis wet biomass through heterofermentation by the [FeFe] hydrogenase of hydrogenogens (hydrogen-producing bacteria) and autofermentation by the [NiFe] hydrogenase of Arthrospira platensis was discussed under dark anaerobic conditions. In heterofermentation, wet cyanobacterial biomass without pretreatment was hardly utilized by hydrogenogens for hydrogen production. But the carbohydrates in cyanobacterial cells released after cell wall disruption were effectively utilized by hydrogenogens for hydrogen production. Wet cyanobacterial biomass was pretreated with boiling and bead milling, ultrasonication, and ultrasonication and enzymatic hydrolysis. Wet cyanobacterial biomass pretreated with ultrasonication and enzymatic hydrolysis achieved the maximum reducing sugar yield of 0.407 g/g-DW (83.0% of the theoretical reducing sugar yield). Different concentrations (10 g/l to 40 g/l) of pretreated wet cyanobacterial biomass were used as substrate to produce fermentative hydrogen by hydrogenogens, which were domesticated with the pretreated wet cyanobacterial biomass as carbon source. The maximum hydrogen yield of 92.0 ml H2/g-DW was obtained at 20 g/l of wet cyanobacterial biomass. The main soluble metabolite products (SMPs) in the residual solutions from heterofermentation were acetate and butyrate. In autofermentation, hydrogen yield decreased from 51.4 ml H2/g-DW to 11.0 ml H2/g-DW with increasing substrate concentration from 1 g/l to 20 g/l. The main SMPs in the residual solutions from autofermentation were acetate and ethanol. The hydrogen production peak rate and hydrogen yield at 20 g/l of wet cyanobacterial biomass in heterofermentation showed 110- and 8.4-fold increases, respectively, relative to those in autofementation.  相似文献   

8.
The effect of heat treatment at different temperatures on two types of inocula, activated sludge and anaerobically digested sludge, was investigated in batch cultures. Heat treatments were conducted at 65, 80 and 95 °C for 30 min. The untreated inocula produced less amount of hydrogen than the pretreated inocula, with lactic acid as the main metabolite. The maximum yields of 2.3 and 1.6 mol H2/mol glucose were achieved for the 65 °C pretreated anaerobically digested and activated sludges, respectively. Approximately a 15% decrease in yield was observed with increasing pretreatment temperature from 65 to 95 °C concomitant with an increase in butyrate/acetate ratio from 1.5 to 2.4 for anaerobically digested sludge. The increase of pretreatment temperature of activated sludge to 95 °C suppressed the hydrogen production by lactic acid fermentation. DNA analysis of the microbial community showed that the elevated pretreatment temperatures reduced the species diversity.  相似文献   

9.
A few studies have been made on fermentative hydrogen production from marine algae, despite of their advantages compared with other biomass substrates. In this study, fermentative hydrogen production from Laminaria japonica (one brown algae species) was investigated under mesophilic condition (35 ± 1 °C) without any pretreatment method. A feasibility test was first conducted through a series of batch cultivations, and 0.92 mol H2/mol hexoseadded, or 71.4 ml H2/g TS of hydrogen yield was achieved at a substrate concentration of 20 g COD/L (based on carbohydrate), initial pH of 7.5, and cultivation pH of 5.5. Continuous operation for a period of 80 days was then carried out using anaerobic sequencing batch reactor (ASBR) with a hydraulic retention time (HRT) of 6 days. After operation for approximately 30 days, a stable hydrogen yield of 0.79 ± 0.03 mol H2/mol hexoseadded was obtained. To optimize bioenergy recovery from L. japonica, an up-flow anaerobic sludge blanket reactor (UASBr) was applied to treat hydrogen fermentation effluent (HFE) for methane production. A maximum methane yield of 309 ± 12 ml CH4/g COD was achieved during the 90 days operation period, where the organic loading rate (OLR) was 3.5 g COD/L/d.  相似文献   

10.
Xylose and glucose are the major sugar components of lignocellulosic hydrolysate. This study aims to develop thermophilic hydrogen-producing consortia from eight sediments-rich samples of geothermal springs in Southern Thailand by repeated batch cultivation at 60 °C with glucose, xylose and xylose-glucose mixed substrates. Significant hydrogen production potentials were obtained from thermophilic enriched cultures encoded as PGR and YLT with the maximum hydrogen yields of 241.4 and 231.6 mL H2/g sugarconsumed, respectively. After repeated batch cultivation the hydrogen yield from xylose-glucose mixed substrate of PGR increased to 375 mL H2/g sugarconsumed which was 30% higher than that of YLT (287 mL H2/g sugarconsumed). Soluble metabolites from xylose-glucose mixed substrates were composed mostly of butyric acid (20.6-21.8 mM), acetic acid (7.2-13.5 mM), lactic acid (8.2-11.7 mM) and butanol (4.4-13.0 mM). Denaturing gradient gel electrophoresis (DGGE) profiles illustrated small difference in microbial patterns of PGR enriched with glucose, xylose-glucose mixed substrate and xylose. The dominant populations were affiliated with low G + C content Gram-positive bacteria, Thermoanaerobacterium sp., Thermoanaerobacter sp., Caloramater sp. and Anoxybacillus sp. based on the 16S rRNA gene. Cultivation of the enriched culture PGR in oil palm trunk hydrolysate, the maximum hydrogen yield of 301 mL H2/g sugarconsumed was achieved at hydrolysate concentration of 40% (v/v). At higher concentration to 80% (v/v), the hydrogen fermentation process was inhibited. Therefore, the efficient thermophilic hydrogen-producing consortia PGR has successfully developed and has great potential for production of biohydrogen from mixed sugars hydrolysate.  相似文献   

11.
Poultry slaughterhouse sludge from chicken processing wastewater treatment plant was tested for their suitability as a substrate and inoculum source for fermentation hydrogen production. Dual digestion of poultry slaughterhouse sludge was employed to produce hydrogen by batch anaerobic self-fermentation without any extra-seeds. The sludge (5% TS) was dual digested by aerobic thermophilic digestion at 55 °C with the varying retention time before using as substrate in anaerobic self-fermentation. The best digestion time for enriching hydrogen-producing seeds was 48 h as it completely repressed methanogenic activity and gave the maximum hydrogen yield of 136.9 mL H2/g TS with a hydrogen production rate of 2.56 mL H2/L/h. The hydrogen production of treated sludge at 48 h (136.9 mL H2/g TS) was 15 times higher than that of the raw sludge (8.83 mL H2/g TS). With this fermentation process, tCOD value in the activated sludge could be reduced up to 30%.  相似文献   

12.
A thermotolerant fermentative hydrogen-producing strain was isolated from crude glycerol contaminated soil and identified as Klebsiella pneumoniae on the basis of the 16S rRNA gene analysis as well as physiological and biochemical characteristics. The selected strain, designated as K. pneumoniae TR17, gave good hydrogen production from crude glycerol. Culture conditions influencing the hydrogen production were investigated. The strain produced hydrogen within a wide range of temperature (30–50 °C), initial pH (4.0–9.0) and crude glycerol concentration (20–100 g/L) with yeast extract as a favorable nitrogen source. In batch cultivation, the optimal conditions for hydrogen production were: cultivation temperature at 40 °C, initial pH at 8.0, 20 g/L crude glycerol and 2 g/L yeast extract. This resulted in the maximum cumulative hydrogen production of 27.7 mmol H2/L and hydrogen yield of 0.25 mol H2/mol glycerol. In addition, the main soluble metabolites were 1,3-propanediol, 2,3-butanediol and ethanol corresponding to the production of 3.52, 2.06 and 3.95 g/L, respectively.  相似文献   

13.
The pretreatment of digested sludge by different methods, including ionizing irradiation, heat-shock, acid and base, was performed for enriching hydrogen-producing bacteria. These methods were evaluated and compared based on their suitability in the enrichment of hydrogen-producing bacteria in dark fermentation with glucose as a substrate in batch tests. The experimental results showed that the seed sludge pretreated by ionizing irradiation achieved the best hydrogen production among the different pretreatment methods, and the maximum hydrogen production potential, maximum hydrogen production rate, hydrogen yield and substrate degradation rate were 525.6 mL, 37.2 mL/h, 267.7 mL/g glucose (2.15 mol/mol glucose) and 98.9%, respectively. Ionizing irradiation can be a good optional pretreatment method for enriching hydrogen-producing bacteria from digested sludge. The effect of ionizing irradiation on the microbial community structure dynamics of the pretreated sludge deserves further study, which will help us to understand the mechanisms leading to the effect of high bio-hydrogen production.  相似文献   

14.
The biohydrogen (H2) production in batch experiments under varying concentrations of raw and ozonated palm oil mill effluent (POME) of 5000–30,000 mg COD.L−1, at initial pH 6, under mesophilic (37 °C), thermophilic (55 °C) and extreme-thermophilic (70 °C) conditions. Effects of ozone pretreatment, substrate concentration and fermentation temperature on H2 production using mesophilic seed sludge was undertaken. The results demonstrated that H2 can be produced from both raw and ozonated POME, and the amounts of H2 production were directly increased as the POME concentrations were increased. H2 was successfully produced under the mesophilic fermentation of ozonated POME, with maximum H2 yield, and specific H2 production rate of 182 mL.g−1 CODremoved (30,000 mg COD.L−1) and 6.2 mL.h−1.g−1 TVS (25,000 mg COD.L−1), respectively. Thus, indicating that the ozone pretreatment could elevate on the biodegradability of major constituents of the POME, which significantly enhanced yields and rates of the H2 production. H2 production was not achieved under the thermophilic and extreme-thermophilic fermentation. In both fermentation temperatures with ozonated POME, the maximum H2 yield was 62 mL.g−1 CODremoved (30,000 mg COD.L−1) and 63 mL.g−1 CODremoved (30,000 mg COD.L−1), respectively. The highest efficiency of total and soluble COD removal was obtained at 44 and 37%, respectively following the mesophilic fermentation, of 24 and 25%, respectively under the thermophilic fermentation, of 32 and 20%, respectively under the extreme-thermophilic fermentation. The production of volatile fatty acids increased with an increased fermentation time and temperature in both raw and ozonated POME under all three fermentation temperatures. The accumulation of volatile fatty acids in the reactor content were mostly acetic and butyric acids. H2 fermentation under the mesophilic condition of 37 °C was the better selection than that of the thermophilic and extreme-thermophilic fermentation.  相似文献   

15.
A constructed microbial consortium was formulated from three facultative H2-producing anaerobic bacteria, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1. This consortium was tested as the seed culture for H2 production. In the initial studies with defined medium (MYG), E. cloacae produced more H2 than the other two strains and it also was found to be the dominant member when consortium was used. On the other hand, B. coagulans as a pure culture gave better H2 yield (37.16 ml H2/g CODconsumed) than the other two strains using sewage sludge as substrate. The pretreatment of sludge included sterilization (15% v/v), dilution and supplementation with 0.5% w/v glucose, which was found to be essential to screen out the H2 consuming bacteria and ameliorate the H2 production. Considering (1:1:1) defined consortium as inoculum, COD reduction was higher and yield of H2 was recorded to be 41.23 ml H2/g CODreduced. Microbial profiling of the spent sludge showed that B. coagulans was the dominant member in the constructed consortium contributing towards H2 production. Increase in H2 yield indicated that in consortium, the substrate utilization was significantly higher. The H2 yield from pretreated sludge (35.54 ml H2/g sludge) was comparatively higher than that reported in literature (8.1–16.9 ml H2/g sludge). Employing formulated microbial consortium for biohydrogen production is a successful attempt to augment the H2 yield from sewage sludge.  相似文献   

16.
Biohydrogen (Bio-H2) can be produced from starch factory wastewater and mixed microorganisms using dark fermentation. Acidic and basic chemicals were used to treat the microorganisms to select the hydrogen (H2)-producing culture. The experiment used a 120 mL bioreactor at 35 °C and the operation commenced with the initial pH level of wastewater in the pH range 4–7 in batch mode. The bacteria:chemical oxygen demand (COD) ratio was 0.2. The initial pH level of the wastewater in the fermentation process affected the H2 yield and the specific hydrogen production rate (SHPR). For acid-treated bacteria, the maximum H2 yield and SHPR were produced at an initial pH of 6.5. The maximum H2 yield and SHPR were 138 mL/g COD degraded and 7.42 mL/g cells?h, respectively. For the base-treated bacteria, the maximum H2 yield and SHPR were produced at initial pH of 6.5 and pH 7, respectively. The maximum H2 yield and SHPR were 182 mL/g COD degraded and 25.60 mL/g cells?h, respectively. The COD degradation efficiency levels were 16 and 20% for acid- and base-treated bacteria, respectively. The digested wastewater remained acidic at pH 4.79–4.83. Throughout the study, no methane gas was observed in the gas mixture produced.  相似文献   

17.
In this study, the effects of pretreatment temperature and time during conventional and unconventional, microwave-assisted heat shock on the hydrogen producing capability of anaerobic seed sludge from soluble starch was focused. It was found that the different heat transfer techniques resulted in seed cultures with comparable hydrogen production potentials, with the highest obtainable values of approximately 0.9 L H2/L-d. A comprehensive, statistical analysis revealed that both treatment temperature and time could be designated as significant process variables, however, in distinguishable extents for the two alternative methods. The results indicated that microwave-based sludge pretreatment needed remarkably shorter curing times (2 min) to eliminate H2-consuming, methanogenic activity in comparison to the conventional heat shock method (30 min). It was also demonstrated that microwave irradiation increased the soluble organic matter content in the seed sludge.  相似文献   

18.
Ultrasonication was evaluated as a pretreatment for biological hydrogen production from glucose in batch studies, in comparison with heat-shock pretreatment, acid pretreatment, and base pretreatment. The optimized sonication energy for hydrogen production using anaerobic digester sludge was 79 kJ/gTS. Sonication with temperature control (less than 30 °C) increased volumetric hydrogen production by 120% over the untreated sludge, and by 40% over the heat-shock and acid pretreated sludge, with a marginal (∼10%) increase in hydrogen production rate. Upon comparing the molar hydrogen yield in sonicated sludge with and without temperature control, the deleterious effect of heat on some hydrogen producers as reflected by a 30% decrease in yield to 1.03 mol H2/mol glucose is evident. Sonication with temperature control affected a 45% increase in molar hydrogen yield to 1.55 mol H2/mol glucose over heat-shock pretreatment at 70 °C for 30 min and acidification to pH 3.0 for 24 h at 4 °C. Sonication with temperature control produced a biomass yield of 0.13 g VSS/g COD, as compared to 0.24 g VSS/g COD for the untreated sludge. The hydrogen yield increased linearly with the molar acetate to butyrate ratio and decreased linearly with the biomass yield.  相似文献   

19.
Two out of six bacterial isolates obtained from the guts of Globitermes sp. termites were identified as hydrogen-producing bacteria. One isolate, Enterobacter cloacae KBH3, was characterised using the BIOLOG identification system and 16S rRNA gene analysis. In a batch fermentation study to evaluate its growth in defined medium, E. cloacae KBH3 produced 154 ml H2 per litre medium with approximately 50% hydrogen content. The carbon utilisation results suggest that E. cloacae KBH3 have the potential to be a good hydrogen producer. This strain is also able to produce hydrogen within a wide range of temperatures (28–40 °C) and pH (4.5–8). In several fermentation runs, the pH of the culture dropped from 6.5 to 5.36 within the first 3 h, which was mostly due to the biosynthesis of formate. An increase of cumulative hydrogen production was recorded as well as a decrease in the concentration of formate, indicating the importance of the formate pathway for hydrogen production. The highest rate of hydrogen production of 180.74 ml H2/l/h was achieved when lactate and acetate were at their highest concentrations. Most of the hydrogen gas was produced during the exponential growth phase, and the biogas continued to be produced during the stationary phase. The specific growth rate was calculated to be 0.224 per hour while the hydrogen yield was 1.8 mol of hydrogen per mol of glucose. At the end of the batch study, the highest cumulative hydrogen production was 2404 ml H2 per litre of fermentation medium.  相似文献   

20.
Dark fermentative hydrogen production by a hot spring culture was studied from different sugars in batch assays and from xylose in continuous stirred tank reactor (CSTR) with on-line pH control. Batch assays yielded hydrogen in following order: xylose > arabinose > ribose > glucose. The highest hydrogen yield in batch assays was 0.71 mol H2/mol xylose. In CSTR the highest H2 yield and production rate at 45 °C were 1.97 mol H2/mol xylose and 7.3 mmol H2/h/L, respectively, and at 37 °C, 1.18 mol H2/mol xylose and 1.7 mmol H2/h/L, respectively. At 45 °C, microbial community consisted of only two bacterial strains affiliated to Clostridium acetobutulyticum and Citrobacter freundii, whereas at 37 °C six Clostridial species were detected. In summary hydrogen yield by hot spring culture was higher with pentoses than hexoses. The highest H2 production rate and yield and thus, the most efficient hydrogen producing bacteria were obtained at suboptimal temperature of 45 °C for both mesophiles and thermophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号