首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel Bi-doped P2O5-B2O3-Al2O3 glass was investigated, and strong broadband NIR (near infrared) luminescence was observed when the sample was excited by 445 nm, 532 nm, 808 nm and 980 nm lasers, respectively. The max FWHM with 312 nm, the lifetime with 580 μs and the σemτ product with 5.3 × 10− 24 cm2 s were obtained which indicates that this glass is a promising material for broadband optical amplifier and tunable laser. The effect of the introduction of B2O3 on the glass structure and Bi-ions illuminant mechanism were discussed and analyzed. It is suggested that the introduction of B2O3 makes the glass structure closer, and the broadband NIR emission derives from Bi0:2D3/2 → 4S3/2 and Bi+:3P1 → 3P0 transitions.  相似文献   

2.
Multi-color LLP phenomenon was observed in Mn2+-doped ZnO-B2O3-SiO2 glass-ceramics after the irradiation of a UV lamp at room temperature. Transparent ZnO-B2O3-SiO2 glass emitted reddish LLP while opaque glass-ceramics prepared by the glass sample after heat treatment emitted yellowish or greenish LLP. The change of the phosphorescence is due to the alteration of co-ordination state of Mn2+. The phosphorescence of the samples was seen in the dark with naked eyes even 12 h after the irradiation with a UV lamp (λmax=254 nm) for 30 min. Based on the approximative t−1 decay law of the phosphorescence, we suggest that the LLP is attributed to the thermally assisted electron-hole recombination.  相似文献   

3.
Glasses with the compositions of xLi2O-(70 − x)Nb2O5-30P2O5, x = 30-60, and their glass-ceramics are synthesized using a conventional melt-quenching method and heat treatments in an electric furnace, and Li+ ion conductivities of glasses and glass-ceramics are examined to clarify whether the glasses and glass-ceramics prepared have a potential as Li+ conductive electrolytes or not. The electrical conductivity (σ) of the glasses increases monotonously with increasing Li2O content, and the glass of 60Li2O-10Nb2O5-30P2O5 shows the value of σ = 2.35 × 10−6 S/cm at room temperature and the activation energy (Ea) of 0.48 eV for Li+ ion mobility in the temperature range of 25-200 °C. It is found that two kinds of the crystalline phases of Li3PO4 and NbPO5 are formed in the crystallization of the glasses and the crystallization results in the decrease in Li+ ion conductivity in all samples, indicating that any high Li+ ion conducting crystalline phases have not been formed in the present glasses. 60Li2O-10Nb2O5-30P2O5 glass shows a bulk nanocrystallization (Li3PO4 nanocrystals with a diameter of ∼70 nm) and the glass-ceramic obtained by a heat treatment at 544 °C for 3 h in air exhibits the values of σ = 1.23 × 10−7 S/cm at room temperature and Ea = 0.49 eV.  相似文献   

4.
Transparent glass-ceramics containing Co2+:ZnAl2O4 nanocrystals were obtained by the sol-gel process for the first time. The gels of composition 89SiO2-5.9Al2O3-4.9ZnO-0.2CoO (ZAS) were prepared at room temperature, and heat-treated at different temperatures. The microstructure and optical properties of the heated samples were studied by using X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared spectroscopy, and optical absorption spectra. Co2+:ZnAl2O4 nanocrystals were precipitated from ZAS system and dispersed in the SiO2-based glass during heat-treatment in the temperature range 900-1100 °C. Co2+ ions were located in tetrahedral sites in ZnAl2O4 nanocrystals. The Co2+:ZnAl2O4 crystallite size was in the range of 4-15 nm.  相似文献   

5.
The fully concentrated Eu3+-based molybdenum borate Eu2MoB2O9 was synthesized by the solid-state reaction method. The photoluminescence excitation and emission spectra, the temperature dependent luminescence intensities and the decay curve were investigated. Photoluminescence spectra show that the phosphor can be efficiently excited by near-UV light and exhibits an intense red luminescence corresponding to the electric dipole transition 5D0 → 7F2 at 615 nm. The luminescence intensities and color purity were investigated by increasing the fired temperatures. The phosphor shows the stable luminescence and color purity at high temperature.  相似文献   

6.
A novel broadband emission phosphor Ca2KMg2V3O12 was first synthesized by solution combustion method. The X-ray diffraction showed that Ca2KMg2V3O12 phase can be obtained at 600-900 °C through combustion route. The crystal structure of this material was refined by Rietveld method using powder X-ray diffraction. It crystallizes in cubic system and belongs to space group Ia3d with z = 8, a = 0.12500 nm. The excitation band of Ca2KMg2V3O12 peaks at 320 nm in a region between 260 nm and 425 nm, and the emission spectrum exhibits an intense band centered at about 528 nm covering from 400 nm to 800 nm. The colour coordinates of samples prepared at different ignition temperatures are in a range of x = 0.323-0.339, y = 0.430-0.447.  相似文献   

7.
Transparent glass-ceramics have been prepared by heat-treating 45SiO2-20Al2O3-10CaO-25CaF2 glasses doped with Eu2+ ions (in mol%). The precipitated crystalline phase in the glass-ceramics was CaF2. TEM observation showed the precipitated crystalline phase had a size of 11-18 nm and dispersed in the amorphous phase without clustering. Fluorescence measurements showed that Eu2+ ions entered into the CaF2 crystalline phase and gave a much stronger emission in the glass-ceramics than in the corresponding glass.  相似文献   

8.
In2O3 octahedrons have been synthesized by heating InCl3 aqueous solution on the Si substrate at 400-900 °C for 2 h. The average size of In2O3 octahedrons is decreased by increasing the heating temperature. The In2O3 octahedrons are single-crystalline with the body-centered cubic structure and have controllable sizes in the range of 0.7-1.0 μm. A possible mechanism was also proposed to account for the formation of In2O3 octahedrons. A strong photoluminescence with a peak at 458 nm was observed from the In2O3 octahedrons at room temperature. This emission can be attributed to oxygen vacancies and indium-oxygen vacancy centers.  相似文献   

9.
The luminescent properties of Ca2Gd8(1−x)(SiO4)6O2:xDy3+ (1% ≤ x ≤ 5%) powder crystals with oxyapatite structure were investigated under vacuum ultraviolet excitation. In the excitation spectrum, the peaks at 166 nm and 191 nm of the vacuum ultraviolet region can be assigned to the O2− → Gd3+, and O2− → Dy3+ charge transfer band respectively, which is consistent with the theoretical calculated value using Jφrgensen's empirical formula. While the peaks at 183 nm and 289 nm are attributed to the f-d spin-allowed transitions and the f-d spin-forbidden transitions of Dy3+ in the host lattice with Dorenbos's expression. According to the emission spectra, all the samples exhibited excellent white emission under 172 nm excitation and the best calculated chromaticity coordinate was 0.335, 0.338, which indicates that the Ca2Gd8(SiO4)6O2:Dy3+ phosphor could be considered as a potential candidate for Hg-free lamps application.  相似文献   

10.
Y2O3:Eu3+ red phosphors were prepared by surfactant assisted co-precipitation-molten salt synthesis method. The effects of surfactant content and annealing temperature on the structure and luminescence were investigated by X-ray diffraction and fluorescence spectrophotometer. The use of surfactant reduces the impurities on the surface of particles and promotes the reaction. The color purity of as-prepared Y2O3:Eu3+ red phosphors is improved with the presence of surfactant. In the excitation spectra, two strong bands at 394 and 466 nm are attributed to 7F0,1-5L6, 7F0,1-5D2 transitions of Eu3+ ions respectively. With the excitation of 394 or 466 nm, the as-fabricated samples reveal excellent red emission as high as that of samples monitored by 254 nm. Thus, the Y2O3:Eu3+ is a promising red phosphor for ultraviolet-visible light-emitting diodes.  相似文献   

11.
This paper presents hydrothermal synthesis, characterization, and photoluminescence (PL) properties of novel green-emitting phosphors, Gd2Zr2O7:Tb3+. Their crystal structure, morphology and photoluminescence properties were investigated by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM) and fluorescence spectrophotometer. The results revealed that one-dimensional Gd2Zr2O7:Tb3+ nanorods with diameter of about 30 nm and length of 150-300 nm were formed, and the products exhibited a fluorite-type structure. PL study revealed that Gd2Zr2O7:Tb3+ phosphors presented dominant green emission luminescence, which was attributed to the transitions from 5D4 excited states to 7FJ (J = 3-6) ground states of Tb3+. The luminescence intensity of Gd2Zr2O7:Tb3+ with different Tb3+ concentration was also investigated and reported, and an obvious concentration quenching was observed when Tb3+ ion concentration was 5 at.%.  相似文献   

12.
13.
We present luminescence, luminescence excitation and luminescence time resolved spectra of La2Be2O5:Pr3+ system. We used high pressure spectroscopy approaches, with high pressure applied in diamond anvil cell (DAC) and sapphire anvil cell (SAC), for detailed analysis of luminescence related to the 4f5d → 4f2 and 4f2 → 4f2 transitions. We present effect of up-converted luminescence related to 4f5d → 4f2 transition excited with 488 nm. We also discussed possibility of existence of praseodymium trapped exciton (PTE) states in La2Be2O5:Pr3+ system. Lack of the PTE is attributed to high quantity of bulk modulus of this material.  相似文献   

14.
Pb2Fe2O5 (PFO) powders in monoclinic structure have been synthesized using lead acetate in glycerin and ferric acetylacetonate as the precursor. The powders were pressed into pellets, which were sintered into ceramics at 800 °C for 1 h. The morphology and structure have been determined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Polarization was observed in Pb2Fe2O5 ceramics at room temperature, exhibiting a clear ferroelectric hysteresis loop. The remanent polarization of Pb2Fe2O5 ceramic is estimated to be Pr ∼ 0.22 μC/cm2. The origin of the polarization may be attributed to the off-centers of shifted Pb2+ ions as well as the FeO6 octahedra in the perovskite-based structure of Pb2Fe2O5. Magnetic hysteresis loop was also observed at room temperature. The Pb2Fe2O5 ceramic shows coexistence of ferroelectricity and ferromagnetism. It provides a new field of research for complex oxides with multiferroic properties.  相似文献   

15.
The oxygen ion transference numbers of La1.7Bi0.3Mo2O9, La2Mo1.7W0.3O9 and La2Mo1.95V0.05O9 ceramics, determined by modified faradaic efficiency and e.m.f. methods at 973-1173 K, vary in the range 0.995-0.977 in air, decreasing when temperature increases. The activation energies for the ionic and electronic transport are 61-71 kJ/mol and 123-141 kJ/mol, respectively. Reducing oxygen chemical potential leads to increasing n-type electronic contribution to the total conductivity, which remains, however, essentially p(O2)-independent down to oxygen pressures of 10−4-10−3 atm and exhibits reversible drop on further reduction, probably due to phase decomposition. Doping La2Mo2O9 with calcium results in segregation of a CaMoO4-based phase, accompanied with increasing electronic transport. The average thermal expansion coefficients of La2Mo2O9-based materials, calculated from dilatometric data in air, are (14.4-14.8) × 10−6 K−1 at 300-700 K and (16.4-22.5) × 10−6 K−1 at 700-1070 K.  相似文献   

16.
Preparation and characterization of porous ultrafine Fe2O3 particles   总被引:1,自引:0,他引:1  
Porous ultrafine Fe2O3 particles were prepared by homogeneous precipitation method. Fe3+ and urea were chosen as starting materials and anionic surfactant as the template. It is shown that the reaction results in the precipitation of a gelatinous hydrous iron oxide/surfactant mixture, which gives ultrafine Fe2O3 particles after drying and calcinations. The products were characterized by XRD, TEM, TG/DTA and BET. Conventional XRD patterns show that the products are mixture of γ-Fe2O3 and α-Fe2O3 phase after being sintered at 350 °C, and γ-Fe2O3 transforms entirely to α-Fe2O3 when sintered at 650 °C. The low-angle XRD patterns indicate that the mesostructure can only exist between 350 and 400 °C. TEM results show that the Fe2O3 particles have diameters of about 30 nm and lengths ranging from 100 to 120 nm; in each particle, there are several vermiculate-like mesopores with diameter of about 20-25 nm. The BET surface areas in excess of 50 m2/g are obtained after calcinations at 350 °C. The BJH desorption average pore width is around 22 nm, which is in agreement with the TEM results. The results show that anionic surfactant and sintering temperature are important to obtain this special morphology.  相似文献   

17.
Gd2Ti2O7: Eu3+ thin film phosphors were fabricated by a sol-gel process. X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800 °C and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. The doped Eu3+ showed orange-red emission in crystalline Gd2Ti2O7 phosphor films due to an energy transfer from Gd2Ti2O7 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 800 to 1000 °C, and the optimum concentrations for Eu3+ were determined to be 9 at.%. of Gd3+ in Gd2Ti2O7 film host.  相似文献   

18.
The phase formation, morphology and luminescent properties of ZnNb2O6 nanocrystals by the sol-gel method were investigated at a lower temperature than that of the traditional solid-state reaction method. The products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), photoluminescence spectroscopy (PL) and absorption spectra. The activation energy of ZnNb2O6 grain growth is obtained about 18.4 kJ/mol. The diameters of the nanocrystals are in the range of 20-40 nm. The PL spectra excited at 276 nm have a broad and strong blue emission band maximum at 450 nm, corresponding to the self-activated luminescence of the niobate octahedra group [NbO6]7−. The optical absorption spectrum of the sample at a calcination temperature of 800 °C has a band gap energy of 3.68 eV.  相似文献   

19.
Novel vanadium dioxide nanorods were fabricated from V2O5 in the presence of a reducing agent, the poly(diallyldimethylammonium chloride) (PDDA) via a hydrothermal method at 180 °C for 48 h. The samples produced were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (FTIR), nitrogen adsorption (BET) and thermogravimetry (TG/DTG). The nanorods obtained are approximately 50 nm wide and from 300 to 500 nm long and presents high surface area (42 m2 g−1). The nanocrystalline B phase VO2 is not produced by hydrothermal treatment in the absence of the PDDA polyelectrolyte.  相似文献   

20.
Temperature dependent radioluminescence under X-ray excitation (XRL) and luminescence decay time measurements following 430 nm laser excitation have been performed in the 10-775 K range on Gd2O2S:Pr3+,Ce3+ scintillating ceramics. From 200 K to both low and high temperature, XRL light yield decreases by 60%. High temperature luminescence quenching has been revisited. Temperature dependent lifetime measurements imply non-radiative de-excitation mechanism at electronic defects spatially correlated to Pr3+ emitting ions. At low temperatures, decreasing XRL light yield with irradiation time is linked to very intense thermoluminescence (TL) peak around 120 K ascribed to sulfur vacancies. These traps cause efficient electron trapping which competes with the prompt recombination mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号