首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effects of B2O3 addition on the microwave dielectric properties and the microstructures of (1−x)LaAlO3-xSrTiO3 ceramics prepared by conventional solid-state routes have been investigated. Doping with 0.25 wt.% B2O3 can effectively promote the densification and the microwave dielectric properties of (1−x)LaAlO3-xSrTiO3 ceramics. It is found that LaAlO3-SrTiO3 ceramics can be sintered at 1400°C due to the liquid phase effect of a B2O3 addition observed by scanning electronic microscopy (SEM). The dielectric constant as well as the Q×f value decreases with increasing B2O3 content. At 1460°C, 0.46LaAlO3-0.54SrTiO3 ceramics with 0.25 wt.% B2O3 addition possesses a dielectric constant (εr) of 35, a Q×f value of 38,000 (at 7 GHz) and a temperature coefficients of resonant frequency (τf) of −1 ppm/°C.  相似文献   

2.
The microwave dielectric properties and microstructures of CuO-doped Nd(Zn1/2Ti1/2)O3 ceramics prepared by the conventional solid-state route were investigated. The prepared Nd(Zn1/2Ti1/2)O3 exhibits a mixture of Zn and Ti showing 1:1 order in the B-site. As an appropriate sintering aid, not only did CuO lower the sintering temperature, it could effectively hold back the evaporation of Zn in the Nd(Zn1/2Ti1/2)O3. Moreover, CuO only resided in boundaries, which was confirmed by EDX analysis. The measured lattice parameters of CuO-doped Nd(Zn1/2Ti1/2)O3 (a = 5.4652 ± 0.0005 ?, b = 5.6399 ± 0.0007 ?, c = 7.7797 ± 0.0008 ? and β = 90.01 ± 0.01°) retained identical to that of the pure Nd(Zn1/2Ti1/2)O3 in all cases. In comparison with the pure Nd(Zn1/2Ti1/2)O3 ceramics, specimen with 1 wt.% CuO addition possesses a compatible combination of dielectric properties with a εr of 30.68, a Q × f of 158,000 GHz (at 8 GHz) and a τf of − 45 ppm/°C at 1270 °C. It also indicated a 60 °C lowering in the sintering temperature. The proposed dielectrics can be a very promising candidate material for microwave or millimeter wave applications requiring extremely low dielectric loss.  相似文献   

3.
The effects of B2O3 addition, as a sintering agent, on the sintering behavior, microstructure and microwave dielectric properties of the 11Li2O-3Nb2O5-12TiO2 (LNT) ceramics have been investigated. With the low-level doping of B2O3 (≤2 wt.%), the sintering temperature of the LNT ceramic could be effectively reduced to 900 °C. The B2O3-doped LNT ceramics are also composed of Li2TiO3ss and “M-phase” phases. No other phase could be observed in the 0.5-2 wt.% B2O3-doped ceramics sintered at 840-920 °C. The addition of B2O3 induced no obvious degradation in the microwave dielectric properties but increased the τf values. Typically, the 0.5 wt.% B2O3-doped ceramics sintered at 900 °C have better microwave dielectric properties of ?r = 49.2, Q × f = 8839 GHz, τf = 57.6 ppm/°C, which suggest that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

4.
Co2O3 doped BaWO4-Ba0.5Sr0.5TiO3 composite ceramics, prepared by solid-state route, were characterized systematically, in terms of their phase compositions, microstructure and microwave dielectric properties. Doping of Co2O3 promoted grain growth, reduced Curie temperature and broadened phase-transition temperature range of BaWO4-Ba0.5Sr0.5TiO3, which were attributed mainly to the substitution of Co3+ for Ti4+ at B site in the perovskite lattice. Dielectric diffusion behaviors of the composite ceramics were discussed. The composite ceramics all had dielectric tunability of higher than 10% at 30 kV/cm and 10 kHz, with promising microwave dielectric properties. Specifically, the sample doped with 0.2 wt.% Co2O3 exhibited a tunability of 20%, permittivity of 225 and Q of 292 (at 1.986 GHz), making it a suitable candidate for applications in electrically tunable microwave devices.  相似文献   

5.
(1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 (0.1 ≤ x ≤ 0.85) composites are prepared by mixing 1150 °C-calcined BaTi4O9 with 1150 °C-calcined Ba(Zn1/3Ta2/3)O3 powders. The crystal structure, microwave dielectric properties and sinterabilites of the (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics have been investigated. X-ray diffraction patterns reveal that BaTi4O9, ordered and disordered Ba(Zn1/3Ta2/3)O3 phases exist independently over the whole compositional range. The sintering temperatures of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics are about 1240 - 1320 °C and obviously lower than those of Ba(Zn1/3Ta2/3)O3 ceramics. The dielectric constants (?r) and the temperature coefficient of resonant frequency (τf) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of BaTi4O9 content. Nevertheless, the bulk densities and the quality values (Q × f) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of Ba(Zn1/3Ta2/3)O3 content. The results are attributed to the higher density and quality value of Ba(Zn1/3Ta2/3)O3 ceramics, the better grain growth, and the densification of sintered specimens added a small BaTi4O9 content. The (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramic with x = 0.1 sintered at 1320 °C exhibits a ?r value of 31.5, a maximum Q × f value of 68500 GHz and a minimum τf value of 4.1 ppm/°C.  相似文献   

6.
Phase composition, microstructure and tunable dielectric properties of (1 − x)BaZr0.25Ti0.75O3-xMgO (BZTM) composite ceramics fabricated by solid-state reaction were investigated. It was found Mg not only existed in the matrix as MgO, there was also trace amount of Mg2+ ions dissolved in the BZT grains, which led to Curie temperature of the BZTM composites ceramics shifting to below −100 °C. Dielectric permittivity of the BZTM composite ceramics was reduced from thousands to hundreds by manipulating the content of MgO. Johnson's phenomenological equation based on Devonshire's theory was used to describe the nonlinear dielectric permittivity of the ceramics with increasing applied DC field. With increasing content of MgO, anharmonic constant α(T) increased monotonously. Dielectric permittivity was 672, while dielectric tunability was as high as 30.0% at 30 kV/cm and dielectric loss was around 0.0016 for the 0.6BaZr0.25Ti0.75O3-0.4MgO sample at 10 kHz and room temperature.  相似文献   

7.
The microwave dielectric properties and the microstructures of MgNb2O6 ceramics with CuO additions (1-4 wt.%) prepared with conventional solid-state route have been investigated. The sintered samples exhibit excellent microwave dielectric properties, which depend upon the liquid phase and the sintering temperature. It is found that MgNb2O6 ceramics can be sintered at 1140 °C due to the liquid phase effect of CuO addition. At 1170 °C, MgNb2O6 ceramics with 2 wt.% CuO addition possesses a dielectric constant (εr) of 19.9, a Q×f value of 110,000 (at 10 GHz) and a temperature coefficient of resonant frequency (τf) of −44 ppm/°C. The CuO-doped MgNb2O6 ceramics can find applications in microwave devices requiring low sintering temperature.  相似文献   

8.
Ferrite (Ni0.6Co0.4Fe2O4) phase, ferroelectric (Pb(Mg1/3Nb2/3)0.67Ti0.33O3) phase and magnetoelectric composites of (x)Ni0.6Co0.4Fe2O4 + (1 − x)Pb(Mg1/3Nb2/3)0.67Ti0.33O3 with x = 0.15, 0.30 and 0.45 were prepared using solid-state reaction technique. Presence of Ni0.6Co0.4Fe2O4 and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 was confirmed using X-ray diffraction technique. The scanning electron microscopic images were used to study the microstructure of the composites. Connectivity scheme present in the magnetoelectric (ME) composites are discussed from the microscopic images. Variation of dielectric constant and dielectric loss with temperature for all the composites was studied. Here we report the effect of Ni0.6Co0.4Fe2O4 mole fraction on connectivity schemes between Ni0.6Co0.4Fe2O4 and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 composite. The variation of magnetoelectric voltage coefficient with dc magnetic field shows peak behaviour. The maximum value of magnetoelectric voltage coefficient of 9.47 mV/cm Oe was obtained for 0.15Ni0.6Co0.4Fe2O4 + 0.85Pb(Mg1/3Nb2/3)0.67Ti0.33O3 composites. Finally we have co-related the effect of Ni0.6Co0.4Fe2O4 content and dielectric properties on magnetoelectric voltage coefficient.  相似文献   

9.
10 mol% Pb(Fe1/2Nb1/2)O3 (PFN) modified Pb(Mg1/3Nb2/3)O3-PbZr0.52Ti0.48O3 (PMN-PZT) relaxor ferroelectric ceramics with compositions of (0.9 − x)PMN-0.1PFN-xPZT (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) were prepared. X-ray diffraction investigations indicated that as-prepared ceramics were of pure perovskite phase and the sample with composition of x = 0.8 was close to morphotropic phase boundary (MPB) between rhombohedral and tetragonal phase. Dielectric properties of the as-prepared ceramics were measured, and the Curie temperature (Tc) increased sharply with increasing PZT content and could be higher than 300 °C around morphotropic phase boundary (MPB) area. At 1 kHz, the sample with composition of x = 0.1 had the largest room temperature dielectric constant ?r = 3519 and maximum dielectric constant ?m = 20,475 at Tm, while the sample with composition of x = 0.3 possessed the maximum dielectric relaxor factor of γ = 1.94. The largest d33 = 318 pC/N could be obtained from as-prepared ceramics at x = 0.9. The maximum remnant polarization (Pr = 28.3 μC/cm2) was obtained from as-prepared ceramics at x = 0.4.  相似文献   

10.
The microwave dielectric properties and the microstructures of the (1−x)MgTiO3-xCaTiO3 ceramic system were investigated. With partial replacement of Mg by Co, dielectric properties of the (1−x)(Mg0.95Co0.05)TiO3-xCaTiO3 ceramics can be promoted. The microwave dielectric properties are strongly correlated with the sintering temperature. At 1275°C, the 0.95(Mg0.95Co0.05)TiO3-0.05CaTiO3 ceramics possesses excellent microwave dielectric properties: a dielectric constant εr of 20.3, a Q×f value of 107 000 ( at 7 GHz) and a τf value of −22.8 ppm/°C. By appropriately adjusting the x value in the (1−x)(Mg0.95Co0.05)TiO3-xCaTiO3 ceramic system, zero τf value can be achieved. With x=0.07, a dielectric constant εγ of 21.6, a Q×f value of 92 000 (at 7 GHz) and a τf value of −1.8 ppm/°C was obtained for 0.93(Mg0.95Co0.05)TiO3-0.07CaTiO3 ceramics sintered at 1275°C for 4 h.  相似文献   

11.
The ceramic system prepared by the conventional solid state method was investigated for its microstructures and microwave dielectric properties. To achieve a temperature-stable material, two compounds with negative and positive temperature coefficients were employed to form mixed phases. The microwave dielectric properties are strongly correlated with composition. For practical application, a dielectric constant (εr) of 37, a quality factor (Q × f value) of 43,000 GHz and a temperature coefficient of resonant frequency (τf) of 1 ppm/°C for 0.6Sm(Co1/2Ti1/2)O3-0.4CaTiO3 sintered at 1420 °C are proposed.  相似文献   

12.
The 0.83ZnAl2O4-0.17TiO2 (ZAT) ceramics were synthesized by solid state ceramic route. The effect of 27B2O3-35Bi2O3-6SiO2-32ZnO (BBSZ) glass on the microwave dielectric properties of ZAT was investigated. The crystal structure and the microstructure of the ceramic-glass composites were studied by X-ray diffraction and scanning electron microscopic techniques. The low frequency dielectric loss was measured at 1 MHz. The dielectric properties of the sintered samples were measured in the microwave frequency range by the resonance method. Addition of 0.2 wt% of BBSZ improved the dielectric properties with quality factor (Qu × f) > 120,000 GHz, temperature coefficient of resonant frequency (τf) = −7.3 ppm/°C and dielectric constant (?r) = 11.7. Addition of 10 wt% of BBSZ lowered the sintering temperature to about 950 °C with Qu × f > 10,000 GHz, ?r = 10 and τf = −23 ppm/°C. The reactivity of 10 wt% BBSZ added ZAT with silver was also studied. The results show that ZAT doped with suitable amount of BBSZ glass is a possible material for low-temperature co-fired ceramic (LTCC) application.  相似文献   

13.
The ceramics with 0.90Pb(Zr0.50Ti0.50)O3-0.07Pb(Mn1/3Nb2/3)O3-0.03Pb(Ni1/2W1/2)O3 were prepared by adding Cr2O3. The effects of Cr2O3 doping on the phase structure, the microstructure and the electrical properties of ceramics were investigated. Meanwhile, the temperature stabilities of the resonant frequency (fr) and the electromechanical coupling factor (Kp) were studied. The results showed that the better temperature stability could be obtained at x = 0.2 wt.% when the calcining temperature was 800 °C and the sintering temperature was 1150 °C. The parameters were Δfr/fr25 °C = −0.17% and ΔKp/Kp25 °C = −1.39%. Moreover, the optimized electrical properties were also achieved, which were KP = 0.54, Qm = 1730, d33 = 330 pC/N, ?r = 2078 and tan δ = 0.0052. The optimized properties make the ceramics with this composition to be a good candidate for high power piezoelectric transformers applications.  相似文献   

14.
The microwave characteristics and the microstructures of 0.88Al2O3-0.12TiO2 with various amounts of MgO-CaO-SiO2-Al2O3 (MCAS) glass sintered at different temperatures have been investigated. The sintering temperature can be lowered to 1300 °C by the addition of MCAS glass. The densities, dielectric constants (εr) and quality values (Q×f) of the MCAS-added 0.88Al2O3-0.12TiO2 ceramics decrease with the increase of MCAS glass content. The temperature coefficients of the resonant frequency (τf) are shifted to more negative values as the MCAS content or the sintering temperatures increase. The change of the crystalline phases of Al2TiO5 phase and rutile-TiO2 phase has profound effects on the microwave dielectric properties of the MCAS-added Al2O3-TiO2 ceramics. As sintered at 1250 °C, 0.88Al2O3-0.12TiO2 ceramics with 2 wt.% MCAS glass addition exists a εr value of 8.63, a Q×f value of 9578 and a τf value of +5 ppm/°C.  相似文献   

15.
Relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) and 10% PbZrO3-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramics were both prepared by a modified precursor method, which was based on the high-temperature synthesis of an oxide precursor that contained all the B-site cations for the consideration of B-site homogeneity. The dielectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramic was more of normal ferroelectric behavior, but the high dielectric constant (?m = 34,200 at 1 kHz) and piezoelectric constant (d33 = 709 pC/N) were observed for this composition close to the morphotropic phase boundary. Comparatively, introduction of 10% PbZrO3 into Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramics enhanced the diffuse phase transition as well as the rhombohedral to tetragonal phase transition temperature, while it also kept the high dielectric constant (?m = 29,600 at 1 kHz) and piezoelectric constant (d33 = 511 pC/N).  相似文献   

16.
The microwave dielectric properties and the microstructures of 0.25 wt.% CuO-doped LaAlO3 ceramics with ZnO additions have been investigated. The sintered LaAlO3 ceramics are characterized by X-ray diffraction spectra and scanning electron microscopy (SEM). Tremendous reduction in sintering temperature can be achieved with the addition of sintering aids CuO and ZnO. The ceramic samples show that dielectric constants (εr) of 22−24 and Q×f values of 33,000−57,000 (at 9.7 GHz) can be obtained at low sintering temperatures 1340−1460°C. The temperature coefficient of resonant frequency varies from −24 to −48 ppm/°C. At the level of 0.25 wt.% CuO and 1 wt.% ZnO additions, LaAlO3 ceramics possesses a dielectric constant (εr) of 23.4, a Q×f value of 57,000 (at 9.7 GHz) and a τf value of −38 ppm/°C at 1400°C for 2 h.  相似文献   

17.
ZnO-(1 − x)TiO2-xSnO2 (x = 0.04-0.2) ceramics were prepared by conventional mixed-oxide method combined with a chemical processing. Fine particle powders were prepared by chemical processing to activate the formation of compound and to improve the sinterability. One wt.% of V2O5 and B2O3 with the mole ratios of 3:1 were used to lower the sintering temperature of ceramics. The effect of Sn content on phase structure and dielectric properties were investigated. The results show that the substituting Sn for Ti accelerates the hexagonal phase transition to cubic phase, and an inverse spinel structure Zn2(Ti1−xSnx)O4 solid solution forms. The best dielectric properties obtained at x = 0.12. The ZnO-0.88TiO2-0.12SnO2 ceramics sintered at 900 °C exhibit a good dielectric property: ?r = 29 and tan δ = 9.86 × 10−5. Due to their good dielectric properties, low firing characteristics, ZnO-(1 − x)TiO2-xSnO2 (x = 0.04-0.2) can serve as the promising microwave dielectric capacitor.  相似文献   

18.
The effect of CaO-SiO2-B2O3 (CSB) glass addition on the sintering temperature and dielectric properties of BaxSmyTi7O20 ceramics has been investigated using X-ray diffraction, scanning electron microscopy and differential thermal analysis. The CSB glass starts to melt at about 970 °C, and a small amount of CSB glass addition to BaxSmyTi7O20 ceramics can greatly decrease the sintering temperature from about 1350 to about 1260 °C, which is attributed to the formation of liquid phase. It is found that the dielectric properties of BaxSmyTi7O20 ceramics are dependent on the amount of CSB glass and the microstructures of sintered samples. The product with 5 wt% CSB glass sintered at 1260 °C is optimal in these samples based on the microstructure and the properties of sintering product, when the major phases of this material are BaSm2Ti4O12 and BaTi4O9. The material possesses excellent dielectric properties: ?r = 61, tan δ = 1.5 × 10−4 at 10 GHz, temperature coefficient of dielectric constant is −75 × 10−6 °C−1.  相似文献   

19.
The effects of CuO-V2O5 addition on the sintering temperature and microwave dielectric properties of ZnO-Nb2O5-TiO2-SnO2 were investigated. The CuO-V2O5 addition lowered the sintering temperature of ZnO-Nb2O5-TiO2-SnO2 ceramics effectively from 1150 to 860 °C due to the liquid-phase effect of Cu2V2O7 and Cu3(VO4)2, as observed by XRD. The microwave dielectric properties were found to strongly correlate with the sintering temperature and the amount of CuO-V2O5 addition. The maximum Qf values decreased with increasing CuO-V2O5 content, due to the formation of the second phase, Cu3(VO4)2 and CuNbO3. Zero τf value can be obtained by properly adjusting the sintering temperature. At 860 °C, ZnO-Nb2O5-TiO2-SnO2 ceramics with 1.5 wt.% CuO-V2O5 gave excellent microwave dielectric properties: ?r = 42.3, Qf = 9000 GHz and τf = 8 ppm/°C.  相似文献   

20.
(5 − x)BaO-xMgO-2Nb2O5 (x = 0.5 and 1; 5MBN and 10MBN) microwave ceramics prepared using a reaction-sintering process were investigated. Without any calcinations involved, the mixture of BaCO3, MgO, and Nb2O5 was pressed and sintered directly. MBN ceramics were produced after 2-6 h of sintering at 1350-1500 °C. The formation of (BaMg)5Nb4O15 was a major phase in producing 5MBN ceramics, and the formation of Ba(Mg1/3Nb2/3)O3 was a major phase in producing 10MBN ceramics. As CuO (1 wt%) was added, the sintering temperature dropped by more than 150 °C. We produced 5MBN ceramics with these dielectric properties: ?r = 36.69, Qf = 20,097 GHz, and τf = 61.1 ppm/°C, and 10MBN ceramics with these dielectric properties: ?r = 39.2, Qf = 43,878 GHz, and τf = 37.6 ppm/°C. The reaction-sintering process is a simple and effective method for producing (5 − x)BaO-xMgO-2Nb2O5 ceramics for applications in microwave dielectric resonators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号