首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the double perovskites Ca2MSbO6 (M = Mn, Fe) that have been prepared by solid-state reaction (M = Fe) and wet chemistry procedures (M = Mn). The crystal and magnetic structures have been studied from X-ray (XRD) and neutron powder diffraction (NPD) data. Rietveld refinements show that the crystal structures are orthorhombic (space group Pbnm) with complete disorder of M and Sb cations, so the formula should be rewritten as Ca(M0.5Sb0.5)O3. Due to this disorder no evidences of Jahn-Teller distortion can be observed in the MnO6 octahedra of Ca(Mn0.5Sb0.5)O3, in contrast with the ordered double perovskite Sr2MnSbO6. Ca(Fe0.5Sb0.5)O3 behaves as an antiferromagnet with an ordered magnetic moment for Fe3+ of 1.53(4)μB and a propagation vector k = 0, as investigated by low-temperature NPD. The antiferromagnetic ordering is a result of the high degree of Fe/Sb anti-site disorder of the sample, which originates the spontaneous formation of Fe-rich islands, characterized by the presence of strong Fe-O-Fe antiferromagnetic couplings with enough long-range coherence to produce a magnetic contribution perceptible by NPD. By contrast, the magnetic structure of Ca(Mn0.5Sb0.5)O3 cannot be observed by low-temperature NPD because the magnitude of the ordered magnetic moments is below the detection threshold for neutrons.  相似文献   

2.
A new yttrium borate compound K3Y3(BO3)4 has been obtained in the K2O-Y2O3-B2O3 ternary system. Its structure, determined from single crystal X-ray diffraction data, shows that it belongs to space group P21/c with unit cell dimensions of a = 10.4667(16) Å, b = 17.361(3) Å, c = 13.781(2) Å and β = 110.548(8)°. The structure consists sheets of [Y8B8O24] linked by out of sheet BO3 groups and Y ions to form a three-dimensional framework. The luminescent properties of Eu3+ and Tb3+ doped K3Y3(BO3)4 materials have also been studied.  相似文献   

3.
A lithium bismuth phosphate, Li2Bi14.67(PO4)6O14, has been synthesized for the first time by the solid-state method. The crystal structure was determined by single crystal X-ray diffraction at 150 K. Li2Bi14.67(PO4)6O14 crystallizes in the monoclinic system C2/c (No. 15), with a = 30.8189(4) Å, b = 5.2691(3) Å, c = 24.5302(3) Å, β = 122.84(2)°, V = 3346.81(1) Å3 and Z = 2. The structure along the b axis consists of layers of [Bi2O2] units as the basic building block. These are separated by isolated PO4 and LiO4 tetrahedra. The oxygen co-ordination around two of the phosphorus atoms is disordered. Solid-state 7Li NMR studies confirm the presence of lithium in the structure. The material shows ionic conductivity of the order of 10−5 S cm−1 at 600 °C.  相似文献   

4.
M2Y8(SiO4)6O2: Tb3+ (M = Ca, Sr) phosphors have been synthesized with a new silicon source silane crosslinking reagent (N-2-aminoethylic-3-aminopropyldiethoxysilane [NH2(CH2)2NH(CH2)3SiCH3(OCH3)2], abbreviated as AEAPMMS) through the sol-gel process, both of which present the characteristic emission 5D4 → 7FJ (J = 6, 5, 4, 3) of Tb3+ ions. It is interesting to be found that the high energy level blue emission (5D3 → 7FJ (J = 6, 5, 4, 3) transition) still can be found in the emission spectrum of Ca2Y8(SiO4)6O2: Tb3+ while it disappears in the emission spectrum of Sr2Y8(SiO4)6O2: Tb3+ for the cross-relaxation-induced quenching.  相似文献   

5.
The crystal structure of Ca0.28Ba0.72Nb2O6 (CBN-28) crystal with Nd-doping has been determined from X-ray single crystal diffraction data, in the tetragonal system with space group P4bm and the following parameters: a = b = 12.458 Å, c = 3.954 Å, V = 613.688 Å3, and Z = 5. X-ray diffraction results on a Nd-doped CBN-28 single crystal also have demonstrated that Nd3+ and Ca2+ occupy the same site in the crystal structure. Dielectric and ferroelectric measurements have been performed. Transition from ferroelectric to paraelectric at around 223 °C has been observed. The Nd-doped crystal has a lower Curie temperature (Tm) than that of undoped CBN-28 crystal. The spontaneous polarization (Ps) and coercive electric field (Ec) also decrease compared with their values in the undoped CBN-28 crystal.  相似文献   

6.
Cu2MnTi3S8 and Cu2NiTi3S8 compounds were prepared by high-temperature synthesis. The crystal structure of these quaternary phases was investigated by X-ray powder diffraction. The compounds are described in the thiospinel structure (space group ) with the lattice constants a = 1.00353(1) nm (Cu2MnTi3S8) and a = 0.99716(1) nm (Cu2NiTi3S8). The atomic parameters were calculated in anisotropic approximation (RI = 0.0456 and RI = 0.0520 for Cu2MnTi3S8 and Cu2NiTi3S8, respectively).  相似文献   

7.
The luminescent properties of Ca2Gd8(1−x)(SiO4)6O2:xDy3+ (1% ≤ x ≤ 5%) powder crystals with oxyapatite structure were investigated under vacuum ultraviolet excitation. In the excitation spectrum, the peaks at 166 nm and 191 nm of the vacuum ultraviolet region can be assigned to the O2− → Gd3+, and O2− → Dy3+ charge transfer band respectively, which is consistent with the theoretical calculated value using Jφrgensen's empirical formula. While the peaks at 183 nm and 289 nm are attributed to the f-d spin-allowed transitions and the f-d spin-forbidden transitions of Dy3+ in the host lattice with Dorenbos's expression. According to the emission spectra, all the samples exhibited excellent white emission under 172 nm excitation and the best calculated chromaticity coordinate was 0.335, 0.338, which indicates that the Ca2Gd8(SiO4)6O2:Dy3+ phosphor could be considered as a potential candidate for Hg-free lamps application.  相似文献   

8.
Crystals of RbPrHP3O10 have been grown by the flux technique and characterized by single-crystal X-ray diffraction. RbPrHP3O10 crystallizes in the triclinic space group with lattice parameters: a = 7.0655(5), b = 7.7791(4), c = 8.6828(6) Å, α = 74.074(3), β = 74.270(3), γ = 82.865(2)°, V = 441.09(5) Å3, Z = 2. The crystal structure has been solved yielding a final R(F2) = 0.0443 and Rw(F2) = 0.1426 for 1955 independent reflections (Fo2 ≥ 2σ(Fo2)). The structure of RbPrHP3O10 consists of PrO8 polyhedra and P3O105− groups sharing oxygen atoms to form a two-dimensional framework; the PrO8 polyhedra form infinite chains by edge-sharing. Each Rb+ ion is bonded to 10 oxygen atoms, these ions are located between chains formed of (HP3O10)4−. The energies of the vibrational modes of the crystal were obtained from measurements of the infrared spectrum.  相似文献   

9.
K2NiF4-type CaLnCoO4 (Ln = Sm and Gd) has been synthesized at 1173 or 1223 K in air using citric acid (CA) and ethylene glycol (EG). CaLnCoO4 (Ln = Sm and Gd) has an orthorhombic structure with the space group Bmab. The average particle sizes are approximately 300 nm for CaSmCoO4 and approximately 170 nm for CaGdCoO4, respectively. The global instability index (GII) indicates that the crystal structure of CaGdCoO4 is more stable than that of CaSmCoO4. CaLnCoO4 (Ln = Sm and Gd) is a p-type semiconductor and shows paramagnetic behavior above 5 K. The 1/χ-T curve of CaSmCoO4 deviates from the Curie-Weiss law, whereas the 1/χ-T curve of CaGdCoO4 follows the Curie-Weiss law in the temperature range of 5 ≤ T ≤ 300 K. From the values of the observed effective magnetic moment (μeff) of CaLnCoO4 (Ln = Sm and Gd), it is considered that the spin state of the Co3+ ion is low.  相似文献   

10.
Uniform submicron BiMn2O5 particles were prepared via a facile one-step hydrothermal route at low temperature. Bi(NO3)3, MnCl2·4H2O and KMnO4 were used as starting materials; KOH as a pH adjustor and also as a mineralizer. Single-crystalline orthorhombic BiMn2O5 sample with controllable morphology was obtained. The microstructure strongly depends on the molar ratio of the starting materials, KOH concentration and reaction temperature. X-ray photoelectron spectroscopy shows the existence of Mn4+ state. Magnetic measurement indicates Néel temperature TN at 44 K. The susceptibility above TN obeys the Curie-Weiss law, χ = C/(T − θ), with θ = −350 K. The effective paramagnetic moment μeff = 4.66 μB/Mn, demonstrating the coexistence of mixed Mn3+ and Mn4+ valences.  相似文献   

11.
Chemical preparation, crystal structure, calorimetric and spectroscopic investigations (IR and RMN) are given for a new non-centrosymmetric organic-cation dihydrogen phosphate-arsenate [H2(C4H10N2)][H2(As, P)O4]2. This compound is triclinic P1 with the following unit-cell parameters: a = 7.082(2) Å, b = 7.796(1) Å, c = 12.05(3) Å, α = 95.37(2)°, β = 98.38(3)°, γ = 62.98(1)°, Z = 2, V = 586.2(1) Å3 and Dx = 1.836 g cm−3. The crystal structure has been solved and refined to R = 0.03 using 2328 independent reflections. The structure can be described as infinite (H2XO)n chains spreading parallel to the b direction. These chains are themselves interconnected by a set of NH?O hydrogen bonds generated by the organic entities, alternating with the chains. Solid-state 13C, 15N and 31P MAS NMR spectroscopies are in agreement with the X-ray structure.  相似文献   

12.
A new titanium oxyphosphate Mg0.50TiO(PO4) has been synthesized and characterized by several physical techniques: X-ray diffraction, 31P MAS-NMR, Raman diffusion, infrared absorption and diffuse reflectance spectroscopy. It crystallizes in the monoclinic system with unit cell parameters: a = 7.367(9), b = 7.385(8), c = 7.373(9) Å, β = 120.23(1), with the space group P21/c (no. 14), Z = 4. The crystal structure has been refined by the Rietveld method using X-ray powder diffraction. The conventional R indices obtained are Rwp = 0.138, Rp = 0.096 and RB = 0.0459. The structure of Mg0.50TiO(PO4) consists of infinite chains of corner-shared [TiO6] octahedra parallel to the c-axis, crosslinked by corner-shared [PO4] tetrahedra. These infinite chains have alternating short (1.74 Å) and long (2.26 Å) TiO bonds and are similar to those found in titanium oxyphosphate MII0.50TiO(PO4) (M2+ = Fe2+, Co2+, Ni2+, Cu2+, Zn2+). The magnesium atom is located in an antiprism between two [TiO6] octahedra. 31P MAS NMR showed only a single 31P resonance line, in a good agreement with the crystal structure. Raman and IR spectra show strong bands respectively at 765 and 815 cm−1, attributed to the vibration of TiOTiO bonds in the infinite chains. The gap due to the Oxygen-Titanium(IV) charge transfer is 3.37 eV.  相似文献   

13.
The new lead vanadium phosphate Pb1.5V2(PO4)3 was synthesized by solid state reaction and characterized by X-ray powder diffraction, electron microscopy, and magnetic susceptibility measurements. The crystal structure of Pb1.5V2(PO4)3 (a = 9.78182(8) Å, S.G. P213, Z = 4) was determined from X-ray powder diffraction data and belongs to the langbeinite-type structures. It is formed by corner-linked V3+O6 octahedra and tetrahedral phosphate groups resulting in a three-dimensional framework. The lead atoms are situated in the structure interstices and only partially occupy their positions. An electron microscopy study confirmed the structure solution. Magnetic susceptibility measurements revealed Curie-Weiss (CW) behavior for Pb1.5V2(PO4)3 at high temperature whereas at around 14 K an abrupt increase on the susceptibility was observed.  相似文献   

14.
The new complex vanadium oxide K2SrV3O9 has been synthesized and investigated by means of X-ray powder diffraction (XPD), electron microscopy and magnetic susceptibility measurements. The oxide has an orthorhombic unit cell with lattice parameters a = 10.1922(2) Å, b = 5.4171(1) Å, c = 16.1425(3) Å, space group Pnma and Z = 4. The crystal structure of K2SrV3O9 has been refined by Rietveld method using X-ray powder diffraction data. The structure contains infinite chains built by V4+O5 square pyramids linked to each other via VO4 tetrahedra. The chains form layers and potassium and strontium cations orderly occupy structural interstices between these layers. Electron diffraction as well as high resolution electron microscopy confirmed the structure solution. Magnetic susceptibility measurements revealed an antiferromagnetic interaction with J of the order of 100 K inside the chains and no long-range magnetic order above 2 K. The origin of the magnetic exchange is likely a result of super-exchange interaction through the two VO4 tetrahedra linking the polyhedra with the magnetic V4+ cations.  相似文献   

15.
Single crystals of a new bismuth vanadate, Bi3.33(VO4)2O2 was prepared by hydrothermal reaction using a hydrated sodium bismuthate, NaBiO3·nH2O as one of the starting compounds. The crystal structure was determined by using single crystal X-ray diffraction data. This compound crystallizes in the triclinic space group (#2) with a = 7.114(1), b = 7.844(2), c = 9.372(2) Å, α = 106.090(7), β = 94.468(7) and γ = 112.506(8)°, Z = 2 and the final R factors are R1 = 0.052 and wR2 = 0.14 for 2085 unique reflections. The crystal structure is composed by four bismuth atoms with the coordination number of 6 or 8 and two VO4 tetrahedra, and one of four bismuth atoms is statistically distributed in the splitting sites with the distance of 0.83 Å. This compound exhibited photocatalytic behavior for decomposition of phenol under visible light irradiation and its activity was less than that of monoclinic BiVO4.  相似文献   

16.
A transport reaction synthesis technique has been used to prepare single crystals of two pyroborate compounds having the formulas Cu2NiO(B2O5) and Cu2MgO(B2O5). The two compounds are isostructural and crystallize in the monoclinic space group P21/c. Cu2NiO(B2O5): a=3.2003(10), b=14.775(3), c=9.097(3), β=93.28(4), V=429.4(2) Å3, Z=4; and Cu2MgO(B2O5): a=3.2401(6), b=14.790(2), c=9.147(2), β=94.88(2), V=436.7(2) Å3, Z=4. The structures of Cu2NiO(B2O5) and Cu2MgO(B2O5) were, respectively, refined from 804 and 1000 independent reflections to the final residuals R1=0.0366, wR2=0.0911 and R1=0.0231, wR2=0.0644. Both compounds exhibit a chevron-like structure built up of ribbons, made of edge-connected copper and nickel-oxygen polyhedra, running along the (1 0 0) direction. These ribbons are connected from one another via oxygen atoms and the cohesion of the three-dimensional network is ensured by [B2O5] entities. Cu in part occupies the position for Ni or Mg, so that the compounds actually are solid solution compounds. Ni or Mg atoms are octahedrally coordinated by oxygen, while the two pure Cu sites show [4] and [4+1] coordination, for Cu(1) and Cu(2), respectively. The ELNES B-K edge spectra for the two compounds support that the borate group present is [B2O5].  相似文献   

17.
Single crystals of a new tin titanate containing Sn2+, Sn2TiO4 was prepared by high temperature reaction in an evacuated quartz tube and its crystal structure was determined by single crystal X-ray diffraction data. The tin titanate crystallizes in the tetragonal space group P42/mbc with = 8.490(2) and = 5.923(3) Å, Z = 4 and the final R factors are R = 0.0497 and Rw = 0.0676 for 354 unique reflections. This tin titanate is isostructural with the low temperature form of Pb3O4(Pb22+Pb4+O4). This compound was oxidized above 600 °C accompanying the mass gain and finally changed to rutile-type solid solution (Sn,Ti)O2.  相似文献   

18.
19.
The CoxNi1−x(SeO3)·2H2O (x = 0, 0.4, 1) family of compounds has been hydrothermally synthesized under autogeneous pressure and characterized by elemental analysis, infrared and UV-vis spectroscopies and thermogravimetric and thermodiffractometric techniques. The crystal structure of Co0.4Ni0.6(SeO3)·2H2O has been solved from single-crystal X-ray diffraction data. This phase is isostructural with the M(SeO3)·2H2O (M = Co and Ni) minerals and crystallizes in the P21/n space group, with a = 6.4681(7), b = 8.7816(7), c = 7.5668(7) Å, β = 98.927(9)° and Z = 4. The crystal structure of this series of compounds consists of a three-dimensional framework formed by (SeO3)2− selenite oxoanions and edge-sharing M2O10 dimeric octahedra in which the metallic cations are coordinated by the oxygens belonging to both the selenite groups and water molecules. The diffuse reflectance spectra show the essential characteristics of Co(II) and Ni(II) cations in slightly distorted octahedral environments. The calculated values of the Dq and Racah (B and C) parameters are those habitually found for the 3d7 and 3d8 cations in octahedral coordination. The magnetic measurements indicate the existence of antiferromagnetic interactions in all the compounds. The magnetic exchange pathways involve the metal orbitals from edge-sharing dimeric octahedra and the (SeO3)2− anions which are linked to the M2O10 polyhedra in three dimensions.  相似文献   

20.
Crystal structure and ionic conductivity of ruthenium diphosphates, ARu2(P2O7)2 A=Li, Na, and Ag, were investigated. The structure of the Ag compound was determined by single crystal X-ray diffraction techniques. It crystallized in the triclinic space group P−1 with a=4.759(2) Å, b=6.843(2) Å, c=8.063(1) Å, α=90.44(2)°, β=92.80(2)°, γ=104.88(2)°, V=253.4(1) Å3. The host structure of it was composed of RuO6 and P2O7 groups and formed tunnels running along the a-axis, in which Ag+ ions were situated. The ionic conductivities have been measured on pellets of the polycrystalline powders. The Li and Ag compounds showed the conductivities of 1.0×10−4 and 3.5×10−5 S cm−1 at 150 °C, respectively. Magnetic susceptibility measurement of the Ag compound showed that it did not obey the Curie-Weiss law and the effective magnetic moment decreased as temperature decreased due to the large spin-orbital coupling effect of Ru4+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号