共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
指出不确定性和模糊性在时空语义上的区别;提出不确定移动对象的模糊时空范围查询问题,即查询条件中时间、空间范围的外延是模糊的,无清晰的边界,而目标对象的位置不确定;用模糊集表示模糊查询条件,概率密度函数表示移动对象在各自不确定区域内的可能位置分布;给出了不确定对象关于模糊查询条件匹配度的计算方法;设计了基于α截集的无效对象排除和有效对象确认规则及查询算法.算法规则适用于任意概率密度分布.现有的确定或不确定范围查询可以看成是模糊时空范围查询的特例.通过实验验证了算法的效率,在各种参数设置下,约有30%~90%的查询结果可在不计算匹配度的情况下获得. 相似文献
3.
Distance-based range search is crucial in many real applications. In particular, given a database and a query issuer, a distance-based
range search retrieves all the objects in the database whose distances from the query issuer are less than or equal to a given
threshold. Often, due to the accuracy of positioning devices, updating protocols or characteristics of applications (for example,
location privacy protection), data obtained from real world are imprecise or uncertain. Therefore, existing approaches over
exact databases cannot be directly applied to the uncertain scenario. In this paper, we redefine the distance-based range
query in the context of uncertain databases, namely the probabilistic uncertain distance-based range (PUDR) queries, which
obtain objects with confidence guarantees. We categorize the topological relationships between uncertain objects and uncertain
search ranges into six cases and present the probability evaluation in each case. It is verified by experiments that our approach
outperform Monte-Carlo method utilized in most existing work in precision and time cost for uniform uncertainty distribution.
This approach approximates the probabilities of objects following other practical uncertainty distribution, such as Gaussian
distribution with acceptable errors. Since the retrieval of a PUDR query requires accessing all the objects in the databases,
which is quite costly, we propose spatial pruning and probabilistic pruning techniques to reduce the search space. Two metrics,
false positive rate and false negative rate are introduced to measure the qualities of query results. An extensive empirical
study has been conducted to demonstrate the efficiency and effectiveness of our proposed algorithms under various experimental
settings. 相似文献
4.
随着室内定位技术的广泛应用,室内位置服务快速发展.移动对象索引技术作为支撑位置服务的核心技术,大多数都基于室外环境,难以直接应用于室内空间.现有的室内移动对象索引,仅关注对移动对象历史数据的查询,且支持的查询类型单一.为此,提出MQII(multiple queries indoor index)索引结构,对移动对象历史和当前位置信息进行索引,能够同时支持对象位置查询、轨迹查询以及时空范围查询.索引采用对象链表和桶链表结构,实现从对象和时空范围2个方面对移动对象数据的管理;提出针对该索引结构的有效更新、查询算法;实验结果表明,与现有室内移动对象索引相比,索引不仅能够支持历史查询和当前查询,还能够同时高效支持对象位置查询、轨迹查询和范围查询.该方法可应用于办公楼、医院等多种室内空间. 相似文献
5.
研究了采用网络距离的道路网上移动对象连续多范围查询处理技术。设计了道路网、移动对象和查询数据在内存中存储的数据模型。基于该数据模型提出了两种道路网上的移动对象连续多范围查询处理算法。其中,增量式范围查询算法(incremental range query algorithm,IRQA)通过使用扩张树和影响列表结构减少查询的重新计算;组范围查询算法(group range query algorithm,GRQA)利用同一路径上多查询的结果具有相关性这一特点减少查询的重新计算。实验结果表明GRQA算法在查询分布比较集中时性能较优,IRQA算法在查询均匀分布时性能较优,此外,两种算法均优于重新计算所有查询结果的原始算法。 相似文献
6.
目前在基于道路网的移动对象的各类查询研究中,大多都是在假定移动对象速度固定不变的基础上进行的.而实际上因为外界环境和自身情况等不确定性因素的影响,对象的速度可能会发生变化.基于此,本文提出一种基于路网的速度不确定的移动对象的k近邻查询处理方法.在查询时刻根据查询点位置执行查询操作,得到构成查询点k近邻的候选对象集合,再根据概率计算方法得到结果集及其概率.实验结果表明本文所提方法是有效的. 相似文献
7.
不确定移动对象概率Skyline集的查询更新 总被引:1,自引:0,他引:1
Skyline查询的研究已从传统的静态Skyline操作延伸到动态的、不确定数据集上的Skyline查询和计算上。研究了移动环境下,查询点位置固定、目标点处于运动状态并且位置不确定情况下的连续概率Skyline计算问题。这个过程中,移动对象与查询对象之间的距离随时间不断变化。移动对象由于其运动状态导致位置无法精确定位,因此移动对象之间的支配关系只能采用概率形式表示,且随时间不断变化。给出了移动对象间的支配概率的定义,以及移动对象Skyline概率的定义,并定义了触发事件来记录对象支配概率发生变化的时刻,实现概率Skyline计算的连续跟踪和动态更新。提出了基于事件触发的连续概率Skyline查询算法(event triggered continuous probabilistic Skyline query for uncertain moving object,U-ECPS),对移动环境下的Skyline集进行连续查询和更新。大量的实验结果验证了U-ECPS算法的有效性。 相似文献
8.
With the rapid advancements in positioning technologies such as the Global Positioning System (GPS) and wireless communications,
the tracking of continuously moving objects has become more convenient. However, this development poses new challenges to
database technology since maintaining up-to-date information regarding the location of moving objects incurs an enormous amount
of updates. Existing indexes can no longer keep up with the high update rate while providing speedy retrieval at the same
time. This study aims to improve k nearest neighbor (kNN) query performance while reducing update costs. Our approach is based
on an important observation that queries usually occur around certain places or spatial landmarks of interest, called reference
points. We propose the Reference-Point-based tree (RP-tree), which is a two-layer index structure that indexes moving objects
according to reference points. Experimental results show that the RP-tree achieves significant improvement over the TPR-tree.
相似文献
Aoying ZhouEmail: |
9.
随着位置感知移动设备的出现及通信技术和GPS系统的不断发展,基于位置的查询在数据库领域得到了广泛的关注.研究了基于快照的空间范围查询,即,查询在某个时间段位于某个查询范围内的移动对象.范围查询是其他空间查询的基础,例如KNN查询和反KNN查询等,很容易在范围查询的基础上得到.国内外的研究者针对移动对象的范围查询问题提出了一系列的算法,然而这些算法要么关注于解决移动对象的快速更新问题,要么关注于解决范围查询的快速处理问题.在大数据的背景下,查询和更新大量涌入时,不仅要求查询算法有较快的响应速度,还要求它们能够实现较高的吞吐量,但已有算法不能很好地解决高吞吐量的问题.针对移动对象更新数据流和查询数据流,提出一种基于内存的高吞吐量移动对象范围查询算法——双向流连接(DSJ)算法.双向流连接算法采用基于快照的模式,通过在每个快照中重新构建索引的方式,以避免复杂的索引维护操作,充分发挥了硬件的性能;通过每次执行一组查询的方式,增加了数据的局部性,提高了算法的效率;在执行过程中,通过使用SIMD技术以加速查询处理过程.基于以上几点,双向流连接算法能够确保整个系统具有很高的吞吐量.在基于德国路网生成的数据集上对算法进行了测试,实验结果表明,双向流连接算法具有很好的性能表现. 相似文献
10.
基于U-tree的不确定移动对象索引策略 总被引:2,自引:0,他引:2
通过在U-tree中添加时间戳和速度矢量等时空因素,提出一种基于U-tree的高效率当前及未来不确定位置信息检索的索引结构TPU-tree,可以支持多维空间中不确定移动对象的索引,并提出了一种改进的基于p-bound的MP_BBRQ(modifiedp-bound based range query)域查询处理算法,能够引入搜索区域进行预裁剪以减少查询精炼阶段所需代价偏高的积分计算.实验仿真表明,采用MP_BBRQ算法的TPU-tree概率查询性能极大地优于传统的TPR-tree索引,且更新性能与传统索引大致相当,具有良好的实用价值. 相似文献
11.
12.
在众多应用中,由于受到测量仪器精度、更新延迟、网络带宽等限制,不同形式的数据不确定性广泛存在。目前,不确定数据中的信息查询受到数据库研究领域学者的关注,并且为不确定数据寻找高效的分析方法也成为了一个热门课题。本文针对基于曼哈顿距离的不确定移动对象概率Skyline查询问题,提出一个基于曼哈顿距离的概率Skyline模型用于求解不确定移动对象在某时刻是Skyline的概率,并得到一个p-t-Skyline结果集,此集合包含所有在t时刻Skyline概率至少是p的移动对象。在实际应用中,计算大量不确定移动对象的Skyline概率过程繁琐,代价高昂。为提高概率Skyline查询过程的计算效率,本文提出包含“采样-限定-修剪-精炼”4个步骤的解决方案。同时,为进一步减少Skyline运算开销,本文使用一个多维索引结构VCI树以加快数据检索的效率。实验结果表明该解决方案在不同数据规模以及维度的数据集上均具有较高的效率。 相似文献
13.
14.
15.
移动对象的连续最近邻查询算法 总被引:3,自引:1,他引:3
介绍了一种索引结构———TPR树和静态环境中基本的最近邻查询算法,并提出了影响时间这一概念,将其运用到最近邻查询算法中,可以完成移动对象的连续最近邻查询。 相似文献
16.
One of the most important queries in spatio-temporal databases that aim at managing moving objects efficiently is the continuous
K-nearest neighbor (CKNN) query. A CKNN query is to retrieve the K-nearest neighbors (KNNs) of a moving user at each time instant within a user-given time interval [t
s
, t
e
]. In this paper, we investigate how to process a CKNN query efficiently. Different from the previous related works, our work relieves the past assumption, that an object moves
with a fixed velocity, by allowing that the velocity of the object can vary within a known range. Due to the introduction
of this uncertainty on the velocity of each object, processing a CKNN query becomes much more complicated. We will discuss the complications incurred by this uncertainty and propose a cost-effective
P2
KNN algorithm to find the objects that could be the KNNs at each time instant within the given query time interval. Besides, a probability-based model is designed to quantify
the possibility of each object being one of the KNNs. Comprehensive experiments demonstrate the efficiency and the effectiveness of the proposed approach.
相似文献
Chiang Lee (Corresponding author)Email: |
17.
Kun-Lung Wu Shyh-Kwei Chen Yu P.S. 《Knowledge and Data Engineering, IEEE Transactions on》2006,18(11):1560-1575
Efficient processing of continual range queries over moving objects is critically important in providing location-aware services and applications. A set of continual range queries, each defining the geographical region of interest, can be periodically (re)evaluated to locate moving objects that are currently within individual query boundaries. We study a new query indexing method, called CES-based indexing, for incremental processing of continual range queries over moving objects. A set of containment-encoded squares (CES) are predefined, each with a unique ID. CESs are virtual constructs (VC) used to decompose query regions and to store indirectly precomputed search results. Compared with a prior VC-based approach, the number of VCs visited in a search operation is reduced from (4L2-1)/3 to log(L)+1, where L is the maximal side length of a VC. Search time is hence significantly lowered. Moreover, containment encoding among the CESs makes it easy to identify all those VCs that need not be visited during an incremental query (re)evaluation. We study the performance of CES-based indexing and compare it with a prior VC-based approach 相似文献
18.
Main Memory Evaluation of Monitoring Queries Over Moving Objects 总被引:4,自引:0,他引:4
Dmitri V. Kalashnikov Sunil Prabhakar Susanne E. Hambrusch 《Distributed and Parallel Databases》2004,15(2):117-135
In this paper we evaluate several in-memory algorithms for efficient and scalable processing of continuous range queries over collections of moving objects. Constant updates to the index are avoided by query indexing. No constraints are imposed on the speed or path of moving objects or fraction of objects that move at any moment in time. We present a detailed analysis of a grid approach which shows the best results for both skewed and uniform data. A sorting based optimization is developed for significantly improving the cache hit-rate. Experimental evaluation establishes that indexing queries using the grid index yields orders of magnitude better performance than other index structures such as R*-trees. 相似文献
19.
20.
不确定数据的查询处理是数据库领域近年来的热点研究课题.提出一种不确定数据上的范围受限的最近邻查询.给定不确定数据集D={o1,o2,…,on},范围约束R是一个简单多边形,q为一固定的查询点,范围受限的最近邻查询返回的是在数据集D中,既满足范围约束R,又能成为查询点q的最近邻的对象集合.为处理该查询,提出了范围受限的最近邻核心集的概念和范围受限的最近邻核心集的查找算法.并提出一种计算范围受限的最近邻候选集的优化方法,降低了查询代价.最后通过实验验证了该算法的有效性. 相似文献