首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Low‐temperature solid oxide fuel cell (SOFC, 300–600°C) technology fueled by methanol possessing significant importance and application in polygenerations has been developed. Thermodynamic analysis of methanol gas‐phase compositions and carbon formation indicates that direct operation on methanol between 450 and 600°C may result in significant carbon deposition. A water steam/methanol ratio of 1/1 can completely suppress carbon formation in the same time enrich H2 production composition. Fuel cells were fabricated using ceria–carbonate composite electrolytes and examined at 450–600°C. The maximum power density of 603 and 431 mW cm?2 was achieved at 600 and 500°C, respectively, using water steam/methanol with the ratio of 1/1 and ambient air as fuel and oxidant. These results provide great potential for development of the direct methanol low–temperature SOFC for polygenerations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Low-operating-temperature solid oxide fuel cells (LT-SOFCs) with various kinds of fuel, such as hydrocarbons, biogas, natural gas, and oxygenated fuel has been an active SOFC research topic. However, conventional SOFC anodes comprised of nickel metal and yttria-stabilized zirconia composite (Ni-YSZ) experience rapid degradation when operated for the butane direct internal steam reforming (B-DISR), especially at a low temperature (LT) range. This study reveals that the impregnated Pd into the Ni-YSZ anode support of thin-film SOFCs (TF-SOFCs) is effective for achieving better performance and stability regarding the TF-SOFC in B-DISR at 600°C. Adding Pd as a dopant into Ni-YSZ significantly promotes the catalytic activity due to the Pd-Ni alloy formation, both on the YSZ grain and the Ni grain surface. The electrochemical performance of cells without Pd (Ni-YSZ cell) and a Pd-infiltrated Ni-YSZ anode (Pd-Ni-YSZ cell) are compared at 600°C for the B-DISR mode at a ratio of steam-to-carbon of 3. Finally, long-term durability tests were performed at 600°C and under 0.15 A cm−2. The Pd infiltration decreases the deterioration rate to 0.63 mV h−1 after the first 80 hours of operation for the Pd-Ni-YSZ cell, which was a significant improvement from that of the Ni-YSZ cell, 3.75 mV h−1 after 40 hours of operation.  相似文献   

3.
The dependence of interfacial contact resistance (ICR) on contact materials between cathode and interconnect is systematically studied under both isothermal oxidation and thermal cycling conditions. Three kinds of cathode current-collecting layer (CCCL) are used, (La,Sr) (Co,Fe)O3 (LSCF), LSCF+10%Ag, and Ag, and tested in a SUS430/CCCL/SUS430 sandwich structure to simulate the actual operation of the solid oxide fuel cells (SOFCs). Experimental results show that the ICR of LSCF+10%Ag exhibits the smallest value, in comparison with the specimens with LSCF and Ag paste, as well as the sample without a CCCL. For LSCF+10%Ag contact, the ICR increases from 0.0069 mΩ cm2 to 3.74 mΩ cm2 under an isothermal condition for 150 h, then increases from 3.74 mΩ cm2 to 10.79 mΩ cm2 after 15 thermal cycles. This work provides information for the understanding of possible mechanisms of performance degradation of SOFCs.  相似文献   

4.
The microstructure of the anode in anode-supported solid oxide fuel cells has significant influence on the cell performance. In this work, microtubular Ni-yttria stabilized zircona (Zr0.8 Y0.2O2, YSZ) anode support has been prepared by the phase inversion method. Different compositions of non-solvent have been used for the fabrication of the Ni-YSZ anode support, and the correlation between non-solvent composition and characteristics of the microstructure of the anode support has been investigated. The presence of ethanol or isopropanol in the non-solvent can inhibit the growth of the finger-like pores in the anode support. With the increase of the concentration of ethanol or isopropanol in the non-solvent, a thin dense layer can be observed on the top of the prepared tubular anode support. In addition, the mechanism of pore formation is explained based on the inter-diffusivity between the solvent and the non-solvent. The prepared microtubular solid oxide fuel cells (MT-SOFCs) have been tested, and the influence of the anode microstructure on the cell electrochemical performance is analyzed based on a polarization model.  相似文献   

5.
A comprehensive 3D theoretical model has been developed to investigate the performance and thermal stress distributions of planar anode-supported solid oxide fuel cells with functionally graded electrodes, at an intermediate temperature. The model includes the equations of charge transport, conservation of mass, momentum, and energy along with the thermal stress and strains. The comprehensive model is simulated numerically and the numerical results are validated using experimental data. The constituent fraction ratio and porosity distribution of each electrode are controlled with a material grading parameter m. Results indicate that the solid oxide fuel cell with functionally graded electrodes perform better than the conventional cell. The power density has shown 23% increase at a working voltage of 0.6 V using functionally graded electrodes with the material grading parameter m = 2.0. Furthermore, the maximum Von Misses stress corresponding to m = 2.0 is less than half the yield stress at both cathode and electrolyte, while they exceed the yield limit for conventional electrodes (constant porosity at electrodes) at the same working conditions. The current results can guide designers of solid oxide fuel cells to adopt functionally graded electrodes for higher performance outcomes and safer thermal stress.  相似文献   

6.
The feasibility of a direct internal reforming (DIR) solid oxide fuel cell (SOFC) running on wet palm‐biodiesel fuel (BDF) was demonstrated. Simultaneous production of H2‐rich syngas and electricity from BDF could be achieved. A power density of 0.32 W cm?2 was obtained at 0.4 A cm?2 and 800 °C under steam to carbon ratio of 3.5. Subsequent durability testing revealed that a DIR‐SOFC running on wet palm‐BDF exhibited a stable voltage of around 0.8 V at 0.2 A cm?2 for more than 1 month with a degradation rate of approximately 15 % / 1000 h. The main cause of the degradation was an increase in the ohmic resistance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The application of heterogeneous catalysis has an important role to play in the successful commercial development of solid oxide fuel cell (SOFC) technology. In this paper, we present an SOFC that combines a catalyst layer with a conventional anode, allowing internal reforming via partial oxidation (POX) of fuels such as methane, propane, butane, biomass gas, etc., without coking and yielding stable power output. The catalyst layer is fabricated on the anode simply by catalyst support coating and reforming catalyst impregnation. The composition and microstructure of catalyst support layer as well as the catalyst composition was easily tailored to meet the demand of in situ reforming. The usage of catalyst layer as an integrated part of the traditional SOFC will provide a simple low-cost power-generating system at substantially higher fuel efficiency and faster start-ups, and may accelerate the application of SOFCs through the direct use of hydrocarbon fuels.  相似文献   

8.
The impact of thiophene in the fuel gas of a commercial solid oxide fuel cell (SOFC) system is investigated for concentrations up to 400 ppmV. Based on the measured voltage–current curves, an empiric correlation for the estimation of the expectable power output of the investigated SOFC system when operated with sulfur containing fuel gases is derived. An interrelation between the open circuit voltage (OCV) and the sulfur concentration of the investigated hydrocarboneous fuel gas is presented and discussed based on corresponding model simulations. The reduction of the steam reforming (STR) activity of the anode cermet material and of the catalytic partial oxidation catalyst used for the fuel gas processing in the investigated SOFC system are found important factors regarding the power output reduction induced by sulfur traces in the fuel gas of SOFCs.  相似文献   

9.
Reducing the operating temperature of solid oxide fuel cells (SOFCs) has attracted worldwide attention in recent years. This has prompted massive efforts in developing new electrolyte materials for low-temperature SOFCs, typically including heterostructure materials consisting of semiconductors and ionic conductors. In this study, a p-n heterostructure (LiZnO–SnO2) and an n-n heterostructure (ZnO–SnO2) are proposed and evaluated in SOFCs to tap further the potential of a heterostructure for low-temperature electrolyte use. The results show that the developed LiZnO–SnO2 and ZnO–SnO2 both capably play competent electrolyte roles in SOFCs with high ionic conductivities and promising fuel cell performance, achieving peak power outputs of 376 and 255 mW cm?2 at 530 °C, respectively. To interpret the good performance of the two heterostructure electrolytes, energy band alignment mechanisms based on p-n hetero-junction and n-n heterostructure are employed to illustrate the ionic enhancement and electronic suppression processes of the materials. These findings reveal new insight into developing heterostructure electrolytes for low-temperature SOFCs.  相似文献   

10.
In this work, tri‐reforming and steam reforming processes have been coupled thermally together in a reactor for production of two types of synthesis gases. A multitubular reactor with 184 two‐concentric‐tubes has been proposed for coupling reactions of tri‐reforming and steam reforming of methane. Tri‐reforming reactions occur in outer tube side of the two‐concentric‐tube reactor and generate the needed energy for inner tube side, where steam reforming process is taking place. The cocurrent mode is investigated, and the simulation results of steam reforming side of the reactor are compared with corresponding predictions for thermally coupled steam reformer and also conventional fixed‐bed steam reformer reactor operated at the same feed conditions. This reactor produces two types of syngas with different H2/CO ratios. Results revealed that H2/CO ratio at the output of steam and tri‐reforming sides reached to 1.1 and 9.2, respectively. In this configuration, steam reforming reaction is proceeded by excess generated heat from tri‐reforming reaction instead of huge fired‐furnace in conventional steam reformer. Elimination of a low performance fired‐furnace and replacing it with a high performance reactor causes a reduction in full consumption with production of a new type of synthesis gas. The reactor performance is analyzed on the basis of methane conversion and hydrogen yield in both sides and is investigated numerically for various inlet temperature and molar flow rate of tri‐reforming side. A mathematical heterogeneous model is used to simulate both sides of the reactor. The optimum operating parameters for tri‐reforming side in thermally coupled tri‐reformer and steam reformer reactor are methane feed rate and temperature equal to 9264.4 kmol h?1 and 1100 K, respectively. By increasing the feed flow rate of tri‐reforming side from 28,120 to 140,600 kmol h?1, methane conversion and H2 yield at the output of steam reforming side enhanced about 63.4% and 55.2%, respectively. Also by increasing the inlet temperature of tri‐reforming side from 900 to 1300 K, CH4 conversion and H2 yield at the output of steam reforming side enhanced about 82.5% and 71.5%, respectively. The results showed that methane conversion at the output of steam and tri‐reforming sides reached to 26.5% and 94%, respectively with the feed temperature of 1100 K of tri‐reforming side. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A two-dimensional model is developed to simulate the performance of methane fueled solid oxide fuel cells (SOFCs), focusing on the effect of electrolyte type on SOFC performance. The model considers the heat and mass transfer, direct internal reforming (DIR) reaction, water gas shift reaction (WGSR), and electrochemical reactions in SOFCs. The electrochemical oxidation of CO in oxygen ion-conducting SOFC (O-SOFC) is considered. The present study reveals that the performance of H-SOFC is lower than that of O-SOFC at a high temperature or at a low operating potential, as electrochemical oxidation of CO in O-SOFC contributes to power generation. This finding is contrary to our common understanding that proton conducting SOFC (H-SOFC) always performs better than O-SOFC. However, at a high operating potential of 0.8 V or at a lower temperature, H-SOFC does exhibit better performance than O-SOFC due to its higher Nernst potential and higher ionic conductivity of the electrolyte. This indicates that the proton conductors can be good choices for SOFCs at intermediate temperature, even with hydrocarbons fuels. The results provide better understanding on how the electrolyte type influences the performance of SOFCs running on hydrocarbon fuels.  相似文献   

12.
Stationary applications of Solid Oxide Fuel Cell systems require operating times of 40,000 to 80,000 h for market introduction. Therefore, extended lifetime tests are essential for learning about the long-term behavior and various degradation mechanisms and to foster ideas about accelerated stack testing. The Forschungszentrum Jülich has been gradually extending the testing time, resulting in successful short-stack operating times of between 20,000 and 40,000 h. This work highlights the results of these long-term tests and compares the observations for different material combinations, operating temperatures of 700 and 800 °C, including different fuel utilizations and gas compositions. An increase of temperature from 700 to 800 °C leads to an acceleration of the degradation rate by a factor of 1.5–2. Meanwhile, an increase in fuel utilization from 40 to 80% did not result in increased degradation. The same was found for higher current densities of up to 1 Acm−2.  相似文献   

13.
In this work, we investigated the performance and stability of a large flat-tube SOFC with symmetric double-sided cathodes (DSC), which was directly fueled with methane. The effect of steam/carbon (S/C) ratio, temperature, and current density on the performance, and long-term stability of the DSC as well as the catalytic behavior of the anode was investigated in details. The thick anode support and inner channels of the DSC formed an efficient microreactor for steam-reforming of methane, resulting in high conversion rate of methane and CO selectivity. In particular, when the S/C was 2, the conversion of CH4 at 750 °C achieved 100% in the DSC and no carbon deposition was observed. Moreover, the voltage of DSC with was stable throughout 190 h under a discharge current density of 0.257 A cm−2.  相似文献   

14.
Methane and carbon dioxide mixture can be used as the fuel in a proton conducting solid oxide fuel cell (SOFC) for power/syngas co-generation and greenhouse gas reduction. However, carbon deposition and low conversion ratio are potential problems for this technology. Apart from using functional catalytic layer in the SOFC to enhance CH4 dry reforming, adding H2O into the fuel stream could facilitate the CH4 conversion and enhance the co-generation performance of the SOFC. In this work, the effects of adding H2O to the CO2CH4 fuel on the performance of a tubular proton conducting SOFC are studied numerically. Results show that the CH4 conversion is improved from 0.830 to 0.898 after adding 20% H2O to the anode. Meanwhile, the current density is increased from 2832 A m−2 to 3064 A m−2 at 0.7 V. Sensitivity studies indicate that the H2:CO ratio can be effectively controlled by the amount of H2O addition and the H2 starvation can be alleviated, especially at high current density conditions.  相似文献   

15.
We present a steady‐state thermodynamic model of a hybrid solid oxide fuel cell (SOFC)–gas turbine (GT) cycle developed using a commercial process simulation software, AspenPlus?. The hybrid cycle model incorporates a zero‐dimensional macro‐level SOFC model. A parametric study was carried out using the developed model to study the effects of system pressure, SOFC operating temperature, turbine inlet temperature, steam‐to‐carbon ratio, SOFC fuel utilization factor, and GT isentropic efficiency on the specific work output and efficiency of a generic hybrid cycle with and without anode recirculation. The results show that system pressure and SOFC operating temperature increase the cycle efficiency regardless of the presence of anode recirculation. On the other hand, the specific work decreases with operating temperature. Overall, the model can successfully capture the complex performance trends observed in hybrid cycles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Solid Oxide Fuel Cells (SOFCs) are an electrochemical energy converter that receives the world's attention as a power generation system of the future owing to its flexibility to consume various types of fuels, low emission of greenhouses gases, and having high efficiency reaching over 70%. A conventional SOFCs operates at high temperature, typically ranges between 800 to 1000°C. SOFCs use yttria-stabilized zirconia (YSZ) as the electrolyte, which exhibits excellent oxide ion conductivity in this temperature range. However, this temperature range poses an issue to SOFCs durability, as it leads to the degradation of the cell components. In addition, SOFCs application is limited and difficult to implement for the transportation sector and portable appliance. A viable solution is to lower the SOFCs operating temperature to intermediate (600 to 800°C) or low (<600°C) operating temperature. The benefit of this way, cell durability will improve, as well as other advantages such as facilitates handling, assembling, dismantling, cost reduction, and expanded the SOFCs application. Nonetheless, the key challenge for the issue is finding suitable electrolyte, as YSZ have lower ionic conductivity at low and intermediate temperature range. The aim of this paper is to review the status and challenges in the attempts made to modify YSZ electrolyte within the past decade. The resulting ionic conductivity, microstructure, and densification, mechanical and thermal properties of these 'new' electrolytes critically reviewed. The targeted conductivity of modification of YSZ electrolyte must be exceeded >0.1 S cm–1 to enable high performance of SOFCs power generation systems to be realized for transportation and portable applications. Based on our knowledge, this paper is the first review which focused on the recent status and challenges of YSZ electrolyte towards lowering the operating temperature.  相似文献   

17.
Hybrid solid oxide fuel cells (SOFC) cycles of varying complexity are widely studied for their potential efficiency, carbon recovery and co-production of chemicals. This study introduces an alternative de-coupled fuel cell-gas turbine hybrid arrangement that retains the high efficiency thermal integration of a topping cycle without the high temperature heat exchanger of a bottoming cycle. The system utilizes a solid-state oxygen transport membrane to divert 30%–50% of the oxygen from the turbine working fluid to the intermediate temperature SOFC. Thermodynamic modeling delineates design trade-offs and identifies a flexible operating regime with peak fuel-to-electric efficiency of 75%. Co-production of electricity and high purity hydrogen result in net energy conversion efficiencies greater than 80%. The potential to retrofit existing turbine systems, particularly micro-turbines and stand-by ‘peaker’ plants, with minimal impact to compressor stability or transient response is a promising pathway to hybrid fuel cell/turbine development that does not require turbomachinery modification.  相似文献   

18.
In this study, we produced reduced graphene oxide (RGO) by reduction of graphene oxide (GO) in Teflon‐lined autoclave, maintained at 100°C for 12 hours, and coated on the anode gas diffusion layer (GDL) of a proton‐exchange membrane fuel cell (PEMFC) to improve the cell performance. Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy analysis showed the presence of residual oxygen‐containing functional groups in RGO. Field‐emission scanning electron microscopy images revealed the uniform and adequate coating of the GDLs with RGO. The wettability of RGO‐coated GDL was determined by the sessile drop method and has optimum contact angle 117°. The power densities for the membrane electrode assembly (MEA) with RGO coated on the anode GDL were 30.92%, 41%, and 36.20% higher than those for the MEA without the RGO coating at anode gas humidified temperatures of 25°C, 45°C, and 65°C, respectively.  相似文献   

19.
Solid oxide fuel cells (SOFCs) operating at high temperatures are highly efficient electrochemical devices since they convert the chemical energy of a fuel directly into heat and electrical energy. The electrochemical performance of an SOFC is significantly influenced by the materials and microstructure of the electrodes since the electrochemical reactions in SOFCs take place at three/triple phase boundaries (TPBs) within the electrodes. In this study, graphene in the form of reduced graphene oxide (rGO) is added to cathode functional layer (CFL) to improve the cell performance by utilizing the high electrical properties of graphene. Various cells are prepared by varying the rGO content in CFL slurry (1–5 wt %), the number of screen printing (1–3) and the cathode sintering temperature (900–1100 °C). The electrochemical behavior of the cells is evaluated by electrochemical performance and impedance tests. It is observed that there is a ∼26% increase in the peak performance of the cell coated with single layer CFL having 1 wt % graphene and 1050 °C sintering temperature, compared to that of the reference cell.  相似文献   

20.
Thermal instability and poor electrochemical activity of copper‐ceria‐YSZ anodes at the solid oxide fuel cells (SOFCs) operation temperature (>700 °C) necessitates the use of new strategy to improve the performance of respective anodes for direct hydrocarbon SOFCs. In the present study, iron is incorporated into copper–ceria–YSZ anodes in order to investigate the structural, morphological, and electrochemical properties by using various techniques such as X‐ray diffraction, elemental mapping, current–voltage testing, and electrochemical impedance spectroscopy. X‐ray diffraction shows that copper promotes the reduction of iron oxide, and formation of cubic phase of copper–iron metals is observed after reduction in H2 at 800 °C. Elemental mapping shows better distribution of metal catalyst inside the pores of copper–ceria–YSZ anodes at 800 °C in the presence of iron. The maximum power densities of copper–ceria–YSZ anodes and copper–iron–ceria–YSZ anodes are observed to be 140 and 195 mW cm?2 in H2 fuel and 70 and 90 mW cm?2 in CH4 fuel at 800 °C. The maximum power density increases with the increase in Cu–Fe metal loading, temperature and with the addition of 1‐wt% Pd in copper–iron–ceria–YSZ anodes. The decrease in performance from 125 to 100 mW cm?2 is observed during the exposure of CH4 fuel for 46 h. Electrochemical impedance spectra show an increase in ohmic and total resistance of cell because of sintering and carbon formation, which affects the catalytic activity of anode lowering the performance of SOFC as suggested by post SEM analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号