首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
采用真空热压烧结技术制备了多种MoSi2基复合材料,研究了强韧相对复合材料组织与性能的影响,并对其复合强韧化机理进行了探讨.结果表明:强韧相的加入均能不同程度地提高MoSi2的强韧性,其强韧化效果取决于强韧相的数量、种类和含量,数量以两相为宜;其中两相强韧化5%SiC+5%Nb/MoSi2 复合材料的性能较优,其显微硬...  相似文献   

2.
自蔓延原位合成TiC/MOSi2复合材料及其力学性能   总被引:1,自引:0,他引:1  
以钼、硅、钛和碳粉为原料,采用自蔓延原位合成技术制备了不同体积分数TiC强韧化的MoSi2基复合材料,研究了TiC颗粒对MoSi2基体材料显微组织和力学性能的影响.结果表明:TiC颗粒均匀分布于MoSi2基体中;TiC体积分数为30%时,TiC/MoSi2复合材料硬度、抗弯强度和断裂韧度分别达到15.02 GPa、366 MPa和6.26 MPa·m1/2,比纯MoSi2分别增加61.5%、26.8%和150%;复合材料的断口表现为沿晶断裂和准解理断裂的混合形式,其强化机制是细晶强化和弥散强化,韧化机制为细晶韧化.  相似文献   

3.
以钼、硅、钨粉为原料,利用无压烧结原位合成技术制备了不同成分的WSi2/MoSi2复合材料,研究了原位生成的WSi2含量对该复合材料显微结构和力学性能的影响。结果表明:制备的复合材料中除含有以固溶形式存在的WSi2、MoSi2相以外,还有微量的(MoyW1-y)5Si3相;复合材料的力学性能较纯MoSi2的有大幅度提高,其中含20%WSi2复合材料的性能最好,1 000℃的抗弯强度和室温断裂韧度分别为367.3 MPa和7.87 MPa.m1/2;复合材料的强化机制为第二相颗粒强化和固溶强化,韧化机制为第二相颗粒增韧和裂纹偏转。  相似文献   

4.
热压Si3N4/MoSi2复合材料的强韧化效果与机制   总被引:3,自引:0,他引:3  
通过显微组织观察和力学性能测试,对亚微米Si3N4颗粒强韧化MoSi2的效果及其作用机制进行了初步研究和探讨.结果表明:复合材料中的Si3N4颗粒在基体的间层作用,可抑制MoSi2晶粒长大;断口呈现晶粒细小、裂纹扩展曲折和沿晶与穿晶混合型断裂等特征;Si3N4颗粒通过弥散强化和细化晶粒使复合材料强度提高,室温断裂韧度达到8.2 MPa·m1/2,通过晶粒细化、裂纹偏转和分支、微裂纹形成等机制的综合作用使复合材料增韧.  相似文献   

5.
以钼粉、硅粉、钨粉和石墨粉为原料,采用真空烧结原位合成方法制备了不同SiC和WSi2配比颗粒增强的SiC+WSi2/MoSi2复合材料,研究了其物相组成、力学性能和室温断口形貌,并分析了复合材料的强韧化机理.结果表明:该复合材料主要由WSi2、MoSi2和SiC相组成,还有微量的(Mo,W)5Si3相;其中10%SiC...  相似文献   

6.
通过显微组织观察和力学性能测试,对SiC晶须和Si3N4颗粒复合强韧化MoSi2的效果及其作用机制进行了初步研究和探讨。结果表明:复合材料中的SiC晶须和Si3N4颗粒的加入可大幅提高其抗弯强度、断裂韧度和维氏硬度;弥散强化和细晶强化是复合材料强度提高的主要机制,抗弯强度达到427 MPa;通过晶粒细化、裂纹偏转和分叉等机制的综合作用使复合材料增韧,室温断裂韧度达到10.4 MPa.m1/2。  相似文献   

7.
在Mg-1.3Mn-1.0Ce-4.0Zn合金熔体中加入质量分数为0~1.5%的碳纳米管(CNTs),采用搅拌铸造法制备了碳纳米管增强镁基复合材料,研究了复合材料的组织和力学性能,并探讨了复合材料的强韧化机制。结果表明:CNTs能细化基体合金的晶粒尺寸,改变晶粒形貌及第二相的分布特征;随着CNTs添加量增大,复合材料的室温强度、断口伸长率和硬度均呈先增大后减小的趋势;当CNTs的质量分数为0.5%时,室温强度、断后伸长率和硬度最高,分别为212.2 MPa,21.1%和55.0HBW,较基体合金的分别增加了8.5%,37.5%和10%;复合材料的强韧化机制包括增强相强化、第二相强化和细晶强化,而晶粒细化、CNTs的润滑作用及对裂纹的阻碍作用是复合材料塑性提高的主要原因。  相似文献   

8.
挤压铸造SiCp/2A50铝基复合材料的组织和力学性能研究   总被引:1,自引:0,他引:1  
研究了在常规铸造工艺下使用挤压铸造方法制备SiC颗粒增强2A50的复合材料,分析了复合材料及增强相的微观组织,检测复合材料的室温力学性能,并探讨复合材料中SiC的强韧化机理以及SiC颗粒体积分数对力学性能的影响。研究表明,使用挤压铸造工艺制备的材料力学性能明显高于铝合金基体;SiCp/2A50复合材料力学性能的提高是位错强化、界面强化和时效强化等机制共同作用的结果;SiCp颗粒的体积分数应控制在20%左右,才能提高复合材料的力学性能。  相似文献   

9.
在镍包铝粉体中添加MoSi2,采用等离子喷涂方法制备了镍铝涂层,研究了MoSi2对镍铝涂层的组织、显微硬度和摩擦磨损性能的影响,并分析了涂层的磨损机理。结果表明:加入MoSi2后,镍铝涂层主要由Ni3Al、NiAl、MoSi2和Mo5Si3相组成;随着MoSi2含量的增加,涂层中孔隙、微裂纹的数量及尺寸增加,显微硬度也逐渐增大;加入质量分数为20%的MoSi2后涂层的耐磨性最好;纯镍铝涂层的磨损机理为磨粒造成的犁削,加入20%MoSi2后涂层的磨损机理为碾压作用和少量的脆性断裂,加入50%MoSi2后涂层主要为脆性断裂。  相似文献   

10.
以钼、硅、碳粉末为原料,采用湿法混合和原位反应热压一次复合工艺制备了MoSi2以及含不同体积分数原位SiC颗粒的SiCP/MoSi2复合材料,并研究了原位SiC颗粒对该材料室温断裂韧度的影响.结果表明:复合后的SiCP/MoSi2室温断裂韧度大幅度提高,原位SiC颗粒可以细化MoSi2基体晶粒,减少和消除脆性的SiO2玻璃相,并阻碍SiCP/MoSi2复合材料断裂时的裂纹扩展而造成裂纹的偏转和桥接.  相似文献   

11.
采用高温自蔓延和真空烧结合成了含0.8%(质量分数)稀土/MoSi2复合材料。在MRH-5A型环-块摩擦磨损试验机上,考察了其与调质45#钢配对时的摩擦磨损特性。运用带有微探针的KYKY2800型扫描电镜分析了其磨损表面形貌,探讨了该材料的磨损机制。结果表明:在干摩擦同等条件下,稀土/MoSi2复合材料比纯MoSi2材料具有更好的抗磨损性能,其磨损率比纯MoSi2至少降低了68%。低速(200r/min)时,RE/MoSi2复合材料的磨损机制主要是粘着磨损,随着载荷的增加,粘着磨损脱落更为严重;在高速(400r/min)和低载荷(78N)下,RE/MoSi2复合材料的磨损机制仍以粘着磨损为主,在重载荷(274N)下,RE/MoSi2复合材料的磨损机制主要为粘着磨损和疲劳脆性断裂。  相似文献   

12.
将纳米ZrO2和SiC颗粒与微米WSi2/MoSi2颗粒进行球磨分散、混合,通过热压烧结制备ZrO2/SiC-WSi2/MoSi2复相陶瓷,研究了它的显微结构与耐磨性并与MoSi2材料进行了对比。结果表明:SiC、ZrO2纳米颗粒的复合化以及钨的合金化能使复相陶瓷晶粒细化,复相陶瓷的硬度较MoSiz陶瓷明显提高,耐磨性优于MoSiz陶瓷,磨损机制主要为粘着磨损兼有疲劳微断裂。  相似文献   

13.
MoSi2基高温结构材料的研究现状与发展   总被引:1,自引:1,他引:1  
MoSi2因优异的性能被认为是最有前途的高温结构材料,然而其低温脆性、低温“PEST”氧化及高温蠕变限制了实际应用。因此重点评述了近年来国内外对其高低温力学性能和氧化性能研究的新成果,并展望了其发展趋势。  相似文献   

14.
为进一步提高铜基自润滑复合材料的硬度和高温摩擦磨损性能,采用粉末冶金热压法向铜-石墨烯-WS2复合材料中引入La2O3增强相颗粒,并对铜-石墨烯-WS2复合材料和La2O3增强铜-石墨烯-WS2复合材料在不同温度下的摩擦磨损性能进行对比研究。结果表明:复合材料烧结过程中各组元没有发生分解或互相反应,烧结后材料结构致密并且各组元均匀分布于基体中,La2O3增强相的引入在提高复合材料硬度的同时会降低材料热导率;室温下2种复合材料摩擦因数和磨损率比较相近,而高温下石墨烯和WS2的氧化导致Cu-RGO-WS2复合材料摩擦磨损性能下降,而La2O3则能发挥增强相作用和高温自润滑作用,使Cu-RGO-WS2-La2O3复合材料的高温摩擦磨损性能更优异。室温下铜-石墨烯-WS2复合材料的磨痕处仅发生了轻微的塑性变形,而La2O3增强铜-石墨烯-WS2复合材料的磨损机制主要是磨粒磨损;高温下铜-石墨烯-WS2复合材料的磨损机制为黏着磨损,而La2O3增强铜-石墨烯-WS2复合材料的磨损机制则为磨粒磨损和疲劳磨损。  相似文献   

15.
唐黎明 《润滑与密封》2023,48(12):138-143
利用分子动力学模拟研究碳纳米管(CNTs)直径改变时对丁腈橡胶(NBR)基体力学及摩擦学性能的影响。采用恒应变法考察不同复合材料模型的力学性能,结果表明复合材料力学性能随着NBR基体中CNTs直径增大呈现先增加后减小的趋势。剪切模拟结果表明,剪切后复合材料基体中分子链发生了不同程度的断裂,出现了聚合物分子链向摩擦界面聚集的现象,其中较大直径CNTs增强NBR复合材料中分子链相对完整连续,摩擦学性能改善效果更好。较大直径CNTs对NBR基体具有显著的增强效果,限制了NBR分子链的活动能力,更多的分子链聚集在CNTs周围,复合材料体系致密性及稳定性提高,从而改善了CNTs/NBR复合材料力学及摩擦学性能。其中直径(6,6)CNTs增强NBR复合材料具有更高的剪切模量,力学性能优异,表现出了更好的摩擦磨损性能。  相似文献   

16.
The effect of a rare earth (RE) surface treatment on the mechanical and tribological properties of carbon fiber (CF) reinforced polytetrafluoroethylene (PTFE) composites was experimentally investigated. The tensile properties of the CF reinforced PTFE (CF/PTFE) composites treated with air oxidation and RE modifier were superior to those of untreated CF/PTFE composites, while RE treatment was most effective in promoting the tensile strength and strain at break of the CF/PTFE composite. The bending strength of the RE treated CF/PTFE composite was improved by about 16% compared with that of untreated composites, while 2% improvement was achieved by air oxidation. Under oil-lubricated conditions, RE treatment was more effective than air oxidation to reduce the friction coefficient and wear of PTFE composite. RE treatment effectively improved the interfacial adhesion between CF and PTFE. The strong interfacial coupling of the composite made CF not easy to detach from the PTFE matrix, and prevented the rubbing-off of PTFE, accordingly improved the friction and wear properties of the composite.  相似文献   

17.
高强有机纤维增强聚烯烃基复合材料加工技术   总被引:6,自引:0,他引:6  
分析了纤维增强聚合物基复合材料的结构特点和力学性能,进行了高强有机纤维增强聚烯烃基复合材料的钻孔、开槽加工技术研究,提出了提高加工质量的技术途径,试验取得了较好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号