首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
开展了增压柴油机燃用D50非标柴油/二甲醚混合燃料时采用EGR技术对发动机动力性、燃烧和排放性能影响的试验研究。试验结果表明:EGR技术可以有效降低混合燃料发动机的NOx排放。随着EGR率的增加,NOx排放改善明显;对动力性的影响相对复杂:中低负荷下,燃烧室内氧浓度较大,对燃烧和排放性能影响较小;高负荷时,废气引入导致燃烧室局部缺氧严重,烟度、HC和CO排放恶化。  相似文献   

2.
EGR对直喷式柴油机瞬态工况燃烧噪声影响的试验研究   总被引:1,自引:0,他引:1  
设计了合适的废气再循环(EGR)系统和试验方案,通过测量引入EGR前后影响燃烧噪声的参数,开展EGR对直喷式柴油机瞬态工况燃烧噪声影响的研究.研究结果表明:引入合适的EGR量,可以降低柴油机瞬态工况燃烧噪声,使大部分负荷工况的柴油机瞬态工况辐射噪声降低1dB以上,且对动力性能影响不大.针对试验结果的分析表明:合适的EGR率使得瞬态工况过程的压力升高率降低,压力高频振荡幅值减小,从而引起相应的燃烧噪声的降低.  相似文献   

3.
冷EGR技术对柴油机性能及排放的影响   总被引:2,自引:1,他引:1  
通过在不同转速和负荷工况下进行的冷EGR试验,研究了冷EGR技术对降低柴油机NOx排放的有效性,同时对比分析了EGR开启和关闭时对柴油机性能和排放的影响.试验研究表明:冷EGR技术除了可以有效降低柴油机的NOx排放以外,还将对柴油机的进气流量、燃油消耗率、烟度、排温以及HC,CO等排放物产生影响,且这种影响随着EGR率和工况的不同而变化.  相似文献   

4.
研究了二甲氧基甲烷(DMM)、EGR和排气后处理对于柴油机燃烧排放的影响,并讨论了达到欧-Ⅲ排放标准的途径.研究结果显示:柴油掺混50 %体积比的DMM,在中低负荷下采用28 %的EGR率,在高负荷下采用7 %的EGR率,可以同时显著降低NOx和碳烟排放,使用柴油机氧化催化转化器(DOC)可以大幅度降低HC和CO排放.通过与纯柴油燃烧过程的比较表明:DMM-柴油混合燃料可以同时增加预混燃烧和扩散燃烧速率,导致最高燃烧压力和放热率增大,采用EGR并未使燃烧持续期显著延长.自然吸气式柴油机掺烧大比例的DMM并结合EGR和DOC,有望达到欧-Ⅲ排放标准.  相似文献   

5.
《内燃机》2017,(4)
如何同时降低NOx和碳烟排放是柴油机有害排放物控制的难点和重点。通过台架试验方法,采用EGR和燃油推迟喷射措施对试验柴油机进行了低温燃烧性能研究,试验表明:由于试验柴油机的EGR率有限,单纯的调节EGR阀并不能实现试验柴油机的低温燃烧,在小负荷工况下引入EGR可以降低试验柴油机的油耗率;单纯的推迟喷油,都出现了NOx和烟度同时降低的低温燃烧现象,但是推迟喷油使得油耗率上升,经济性下降。采用EGR全开+推迟喷油的方式在1 800r/min 30 N·m时获得了比原机更低的油耗率、NOx和烟度排放,循环波动率变化较小。但随着负荷的增加,虽然可以实现NOx和烟度同时降低,但是试验柴油机的经济性下降。  相似文献   

6.
利用实时EGR率测量系统及瞬态工况测控平台对增压中冷柴油机废气再循环(EGR)阶跃工况下的EGR率、进气量、发动机转矩、燃烧过程特征参数、排气烟度及气态有害排放物的响应历程进行了试验研究.试验结果表明:在1 600 r/min5、0%负荷工况,EGR率从0分别阶跃到3%、5%、13%和28%时,EGR率、进气流量及发动机有效转矩响应速度较快且相近,均为0.5 s左右;排气烟度和以最高燃烧压力表征的缸内燃烧过程趋于稳定状态历时较长且时间相近,不同EGR率阶跃时均为2.5 s左右;以气态有害物排放表征的柴油机排放响应历时最长为6 s左右.这说明在EGR阶跃工况下,当EGR率达到稳定时,由于燃烧边界条件存在迟滞效应,从而会导致燃烧过程、有害物排放存在较长的延迟.  相似文献   

7.
以潍柴蓝擎WP12重型柴油机为研究对象,在低速、中低负荷,通过对比进气门晚关机构(IVCA)开闭两种状态对两级增压系统匹配关系的影响,分析其对关键气路参数和燃烧过程的影响.研究表明,在喷油定时和EGR率不变的条件下,柴油机运行在低速低负荷工况,采用IVCA机构后进气流量减小,有效热效率上升,NO_x和碳烟排放均呈现降低趋势,HC排放降低,而CO排放上升;而在低速、中等负荷工况(50%,~75%,),采用IVCA机构后,进气流量依然减小,但有效热效率下降,NO_x和HC排放下降,碳烟排放对EGR率的敏感程度增加,CO排放随EGR率增加呈现先降低、后增加的趋势.  相似文献   

8.
利用GT-Power仿真软件搭建了船用中速柴油机一维预测模型,研究了气门正时对船用中速柴油机性能和燃烧过程的影响,并借助DOE方法对柴油机采用EGR技术后的配气相位进行了优化。研究结果表明:采用可变气门正时技术可达到改善采用EGR技术的船用中速柴油机中低负荷工况的燃油经济性的目的:同时该技术对EGR所造成的排气温度和热负荷升高同样有积极的改善效果。  相似文献   

9.
为了降低车用柴油机的NOx排放,分析了不同工况下EGR率对柴油机性能的影响。通过试验了解到,采用EGR可以有效地降低NOx排放,大负荷比小负荷效果显著。并对控制最佳EGR率的电控脉谱系统提出了初步的探讨。  相似文献   

10.
富氧燃烧对柴油机工作特性影响的试验研究   总被引:1,自引:0,他引:1  
在一台增压柴油机上进行了富氧进气的试验研究,并在此基础上采用EGR技术,研究不同进气氧浓度下EGR率对柴油机排放特性的影响,以期改善柴油机NOx和碳烟的权衡关系。研究表明:富氧进气柴油机在同一进气氧浓度下,其有效燃油消耗率随着负荷的增加而明显减小;同一负荷时有效燃油消耗率随着氧浓度的升高而稍有降低。在富氧燃烧的基础上,引入EGR可以实现柴油机的烟度和NOx排放的同时降低,其关键是在一定的工况点匹配与之相适合的EGR率。当2 200 r/min全负荷工况下,进气氧浓度21%与EGR率20%组合、氧浓度22%与EGR率50%组合,烟度和NOx排放降低比例分别达到20.0%和14.8%、6.7%和19.2%。  相似文献   

11.
为在保持柴油机动力性和经济性能的同时有效改善其排放性能,在一台4缸柴油机上针对6、12、24mg循环喷油量的负荷工况(记作低、中、高负荷)对比研究了冷、热废气再循环(EGR)对性能、燃烧及排放特性的影响。结果表明:EGR的引入减少了新鲜进气量,整体上延长了滞燃期,减缓了燃烧放热速率,降低了压力升高率;热EGR提高了进气温度,使低负荷时的碳氢化合物(HC)排放显著降低,热效率提高,而高负荷高EGR率时由于过量空气系数偏低引起了热效率的明显降低,对最大压力升高率的降低作用也弱于冷EGR;随着EGR率的提高,三种负荷下的氮氧化物(NO_x)排放均大幅度降低,碳烟排放在低、中负荷时较低,而在高负荷时则明显升高,NO_x与碳烟排放之间出现此消彼长的矛盾趋势。冷的高EGR率下的碳烟排放升高幅度减小,有效地缓解了这种矛盾。综合分析低、中、高负荷下的热效率及排放,低负荷时为提高热效率宜采用热EGR,高负荷时为降低过高的压力升高率并兼顾热效率则更适合采用冷EGR。  相似文献   

12.
在不同工况下研究了不同EGR率对增压中冷柴油机燃用M15甲醇柴油混合燃料的燃烧和污染物排放的影响。实验结果表明:随着EGR的增加,最高缸压、最大放热率和缸内温度逐渐降低,所对应的曲轴转角后移,NOx排放大幅度降低,烟度、HC、CO等排放有不同程度的恶化。选择合适的EGR率可以消除柴油机NOx排放和烟度之间的Trade-off关系。  相似文献   

13.
李澍冉  王大为  石磊  邓康耀  桂勇 《柴油机》2018,40(4):1-6, 24
以某型6缸低速二冲程柴油机为研究对象,建立GT-POWER一维仿真模型,研究高、低压EGR系统对柴油机性能及排放的影响。研究结果表明:随着EGR率的上升,高压EGR系统中压气机运行点从中心高效区向低效区和流量减小的方向移动,而低压EGR系统的流量和压比变化较小;高压EGR系统缸内压力始终低于低压EGR系统,在低负荷时,导致燃烧速度和放热率峰值低于低压EGR系统;燃油消耗率随着EGR率的增加呈上升趋势,当EGR率增加到一定程度时燃油消耗率上升更明显,并且高压EGR系统燃油消耗率明显高于低压EGR;两种EGR系统都能降低NO_x排放,但相同EGR率时,高压EGR系统NO_x减排效果更好。  相似文献   

14.
《Energy》2006,31(14):2665-2676
This paper focuses on the effects of internal and cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI). The use of fuel injection before the top center (TC) of an exhaust stroke and the negative valve overlap (NVO) to form the homogeneous mixture achieves low NOx and smoke emissions HCCI. Internal and external EGR are combined to control the combustion. Internal exhaust gas recirculation (IEGR) benefits to form a homogeneous mixture and reduces smoke emission further, but lower the high load limits of HCCI. Cooled external EGR can delay the start of combustion (SOC) effectively, which is very useful for high cetane fuel (diesel) HCCI because these fuels can easily self-ignited, making the SOC earlier. External EGR can avoid the knock combustion of HCCI at high load, which means it can expand the high load limit. HCCI maintains low smoke emission at various EGR rates and various loads compared with a conventional diesel engine because there are no fuel-rich volumes in the cylinder.  相似文献   

15.
The distinctive properties of hydrogen have initiated considerable applied research related to the internal combustion engine. Recently, it has been reported that NOx emissions were reduced by using hydrogen in a diesel engine at low temperature and heavy EGR conditions. As the continuing study, cylinder pressure was also investigated to determine the combustion characteristics and their relationship to NOx emissions. The test engine was operated at constant speed and fixed diesel fuel injection rate (1500 rpm, 2.5 kg/h). Diesel fuel was injected in a split pattern into a 2-L diesel engine. The cylinder pressure was measured for different hydrogen flow rates and EGR ratios. The intake manifold temperature was controlled to be the same to avoid the gas intake temperature variations under the widely differing levels (2%-31%) of EGR. The measured cylinder pressure was analyzed for characteristic combustion values, such as mass burn fraction and combustion duration.The rising crank angle of the heat release rate was unaffected by the presence of hydrogen. However, supplying hydrogen extended the main combustion duration. This longer main combustion duration was particularly noticeable at the heavy EGR condition. It correlated well with the reduced NOx emissions.  相似文献   

16.
EGR技术应用在增压柴油机上出现了进排气压逆差导致应用有限的现象。本文采用将原有进气系统改造成由多个文曲利管并联组成的进气系统解决此问题。该系统一方面可由不同文曲利管之间的组合排列达到适应随工况变化的可变进气目的;另一方面,可以借助多个文曲利管的喉部压降能力吸引更多排气达到扩大EGR率的效果。通过流量模拟测试实验获得,采用MVVIPS较传统的串联式和分流式文曲利管系统都取得了更大的流通能力和压降能力;通过内燃机综合测试台架可知,采用MVVIPS系统后,试验用柴油机过量空气系统在不同转速下有着不同的变化;相比较原机的EGR系统,MVVIPS系统的EGR率在每个试验工况下都得到了不同程度的提高;动力性和经济性都在低、中转速下有小幅升高,但在高转速下与原机相差不大;根据稳态十三工况排放数据显示,采用MVVIPS系统后,NOx排放得到了有效控制,CO和微粒排放变化不大,HC排放在怠速及低工况范围内有着较明显的降低。  相似文献   

17.
The effects of in-cylinder EGR stratification on combustion and emission characteristics are investigated in a single cylinder direct injection diesel engine. To achieve in-cylinder EGR stratification, external EGR rates of two intake ports are varied by supplying EGR asymmetrically using a separated intake runner. The EGR stratification pattern is improved using a 2-step bowl piston and an offset chamfer at the tangential intake port. When high EGR gas is supplied to the left (tangential) port, a high EGR region is formed at the central upper region of the combustion chamber. Consequently, combustion is initiated in the low EGR region, and PM is reduced significantly. When high EGR gas is supplied to the right (helical) port, a high EGR region is formed at the lower periphery of the combustion chamber. Therefore, combustion is initiated in the high EGR region, and NOx is reduced without PM penalty. Stratified EGR potentially reduces NOx by maximum 45%, without penalties of performance and other emissions. A proper in-cylinder swirl with stratified EGR maximizes the effects and achieves simultaneous reduction of NOx by 7% and PM by 23%. Moreover, the robustness of stratified EGR is evaluated under various operating conditions and injection strategies.  相似文献   

18.
Dimethyl ether (DME) and n-pentanol can be derived from non-food based biomass feedstock without unsettling food supplies and thus attract increasing attention as promising alternative fuels, yet some of their unique fuel properties different from diesel may significantly affect engine operation and thus limit their direct usage in diesel engines. In this study, the influence of n-pentanol, DME and diesel blends on the combustion performance and emission characteristics of a diesel engine under low-temperature combustion (LTC) mode was evaluated at various engine loads (0.2–0.8 MPa BMEP) and two Exhaust Gas Recirculation (EGR) levels (15% and 30%). Three test blends were prepared by adding different proportions of DME and n-pentanol in baseline diesel and termed as D85DM15, D65P35, and D60DM20P20 respectively. The results showed that particulate matter (PM) mass and size-resolved PM number concentration were lower for D85DM15 and D65P35 and the least for D60DM20P20 compared with neat diesel. D60DM20P20 turned out to generate the lowest NOx emissions among the test blends at high engine load, and it further reduced by approximately 56% and 32% at low and medium loads respectively. It was found that the combination of medium EGR (15%) level and D60DM20P20 blend could generate the lowest NOx and PM emissions among the tested oxygenated blends with a slight decrease in engine performance. THC and CO emissions were higher for oxygenated blends than baseline diesel and the addition of EGR further exacerbated these gaseous emissions. This study demonstrated a great potential of n-pentanol, DME and diesel (D60DM20P20) blend in compression ignition engines with optimum combustion and emission characteristics under low temperature combustion mode, yet long term durability and commercial viability have not been considered.  相似文献   

19.
In the present work, dual fuel operation of a diesel engine has been experimentally investigated using biodiesel and hydrogen as the test fuels. Jatropha Curcas biodiesel is used as the pilot fuel, which is directly injected in the combustion chamber using conventional diesel injector. The main fuel (hydrogen) is injected in the intake manifold using a hydrogen injector and electronic control unit. In dual fuel mode, engine operations are studied at varying engine loads at the maximum pilot fuel substitution conditions. The engine performance parameters such as maximum pilot fuel substitution, brake thermal efficiency and brake specific energy consumption are investigated. On emission side, oxides of nitrogen, hydrocarbon, carbon monoxide and smoke emissions are analysed. Based on the results, it is found that biodiesel-hydrogen dual fuel engine could utilize up to 80.7% and 24.5% hydrogen (by energy share) at low and high loads respectively along with improved brake thermal efficiency. Furthermore, hydrocarbon, carbon monoxide and smoke emissions are significantly reduced compared to single fuel diesel engine operation. Exhaust gas recirculation (EGR) has also been studied with biodiesel-hydrogen dual fuel engine operations. It is found that EGR could improve the utilization of hydrogen in dual fuel engine, especially at the high loads. The effect of EGR is also found to reduce high nitrogen oxide emissions from the dual fuel engine and brake thermal efficiency is not significantly affected.  相似文献   

20.
Previous experimental studies on diesel engine have demonstrated the potential of exhaust gas recirculation (EGR) as an in‐cylinder NOx control method. Although an increase in EGR at constant boost pressure (substitution EGR) is accompanied with an increase in particulate matter (PM) emissions in the conventional diesel high‐temperature combustion (HTC), the recirculation of exhaust gases supplementary to air inlet gas (supplemental EGR) by increasing the boost pressure has been suggested as a way to reduce NOx emissions while limiting the negative impact of EGR on PM emissions. In the present work, a low‐pressure (LP) EGR loop is implemented on a standard 2.0 l automotive high‐speed direct injection (HSDI) turbocharged diesel engine to study the influence of high rates of supplemental cooled EGR on NOx and PM emissions. Contrary to initial high‐pressure (HP) EGR loop, the gas flow through the turbine is unchanged while varying the EGR rate. Thus, by closing the variable geometry turbine (VGT) vanes, higher boost pressure can be reached, allowing the use of high rates of supplemental EGR. Furthermore, recirculated exhaust gases are cooled under 50°C and water vapour is condensed and taken off from the recirculated gases. An increase in the boost pressure at a given inlet temperature and dilution ratio (DR) results in most cases an increase in NOx emissions and a decrease in PM emissions. The result of NOx–PM trade‐off, while varying the EGR rate at fixed inlet temperature and boost pressure depends on the operating point: it deteriorates at low load conditions, but improves at higher loads. Further improvement can be obtained by increasing the injection pressure. A decrease by approximately 50% of NOx emissions while maintaining PM emission level, and brake specific fuel consumption can be obtained with supplemental cooled EGR owing to an LP EGR loop, compared with the initial engine configuration (HP moderately cooled EGR). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号