首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
PSO演化神经网络集成的边际电价预测新方法   总被引:2,自引:0,他引:2  
为了克服神经网络模型结构和参数难以设置,学习算法收敛速度慢等缺点,提出了一种基于粒子群优化的演化神经网络集成新模型对日前交易电力市场的边际电价进行预测。该模型将边际电价预测问题转化为神经网络实际输出与预测输出误差最小化问题,首先采用粒子群优化算法把神经网络的结构和权重映射成问题空间中的粒子,通过粒子速度和位置更新方程进行粗学习,获得多个相对占优的神经网络结构和初始权重并构成神经网络集成预测模型,然后采用梯度学习算法和交叉验证对神经网络集成单元的权重进行细学习,并以误差最小的神经网络集成单元的输出作为神经网络集成预测模型的输出。运用此方法对加州日前交易电力市场的边际电价进行了日预测,结果表明其优于三层BP神经网络预测方法。  相似文献   

2.
提出一种混合粒子群算法,在局部邻近区域的粒子群算法中引入收缩因子和被动聚集,将最邻近聚类用于NRBF 神经网络的参数确定中,采用混合粒子群算法优化最近邻聚类的聚类半径,从而确定NRBF 神经网络的参数,提高了NRBF 神经网络的泛化能力。以美国PJM电力市场公布的2006年负荷与电价数据进行预测验证,证明了此方法所建立的模型的合理性和有效性。  相似文献   

3.
提出一种混合粒子群算法,在局部邻近区域的粒子群算法中引入收缩因子和被动聚集,将最邻近聚类用于NRBF神经网络的参数确定中,采用混合粒子群算法优化最近邻聚类的聚类半径,从而确定NRBF神经网络的参数,提高了NRBF神经网络的泛化能力.以美国PJM电力市场公布的2006年负荷与电价数据进行预测验证,证明了此方法所建立的模型的合理性和有效性.  相似文献   

4.
基于小波变换的边际电价神经网络预测新模型   总被引:4,自引:0,他引:4  
提出了一种基于小波变换和群智能演化的神经网络集成预测新模型,对日前交易边际电价进行预测.首先利用小波变换将历史边际电价序列分解为高频和低频部分,并分别构造学习样本作为神经网络集成的输入;然后将边际电价预测问题转化为神经网络实际输出与预测输出误差最小化问题,其寻优过程采用粗-细二阶段学习算法.在第1阶段,采用粒子群优化算法把神经网络的结构和权重映射成问题空间中的粒子,通过粒子速度和位置更新方程进行粗学习,获得多个相对占优的神经网络结构和初始权重并构成神经网络集成单元;在第2阶段,采用梯度学习算法和交叉验证对神经网络集成单元的权重进行细学习,并以误差最小的神经网络集成单元的输出作为神经网络集成预测模型的输出.美国加州日前交易电力市场边际电价预测算例表明,该预测方法可以获得较高的预测精度,且优于BP神经网络方法和ARIMA预测方法.  相似文献   

5.
电力市场中的边际电价预测   总被引:42,自引:7,他引:42  
在分析了系统边际价格(SMP)形成机理和影响因素的基础上,分别提出了基于累计式自回归滑动平均模型(ARIMA)和人工神经网络(ANN)的SMP预测方法,在这2种方法中都引入了市场供求指数(SDI)作为影响SMP的因素。通过对某省级发电市场真实数据的仿真结果表明,在引入SDI后,ARIMA模型和ANN模型的预测精度都得到了提高;同时,ANN模型比ARIMA模型更易于处理多种市场因素,若在模型中考虑更多的市场因素,则SMP预测的精度可进一步提高。  相似文献   

6.
基于粒子群模糊神经网络的短期电力负荷预测   总被引:3,自引:0,他引:3  
为了从根本上提高短期电力负荷预测中神经网络的速度和预测精度,提出了将粒子群算法和BP算法相结合的短期负荷预测方法。用粒子群算法来训练网络参数,直到误差趋于一稳定值,然后用优化的权值进行BP算法,实现短期负荷预测。在构建网络模型时,考虑了气候、温度等因素的影响,并把它们进行模糊化处理后作为网络的输入。仿真结果表明基于这一方法的负荷预测系统具有较高的精度和实时性。  相似文献   

7.
为了提高电力市场环境下的电价预测精度,在研究短期电价预测中采用了粒子群和反向传播神经网络相结合的混合算法,先利用粒子群算法确定初值,再采用神经网络完成给定精度的学习.对我国四川电网电价进行预测的结果表明,粒子群优化的神经网络算法收敛速度快于神经网络算法,预报精度显著提高,平均百分比误差可控制在2%以内,平均绝对误差最大值为1.87¥/MWh.该算法可有效用于电力系统的短期电价预测.  相似文献   

8.
级联相关的神经网络模型在边际电价预测中的应用   总被引:12,自引:4,他引:12       下载免费PDF全文
在实际的电力市场运作中,电厂的报价反映了电厂的运行成本和市场供求,决定电厂机组能否上网发电和上网电量。而报价的一个重要指标是预测的系统边际电价。因此,电力市场中的边际电价预测在发电厂的市场化运营中处于重要的地位,特别是对电力供应商的决策有重要意义。文中应用神经网络理论中的级联相关模型对电力系统的边际电价进行预测,优点在于避免了对网络结构的估计,网络在训练的过程中能够自适应地增加隐含节点,同时提出了在训练集中增加特殊数据点以提高预测精度的方法。通过New EnglandISO数据算例预测第2天的24h边际电价说明了这种方法的可行性,并用3层BP神经网络做了对比研究。  相似文献   

9.
针对电力系统继电保护中故障诊断的特点和要求,建立了基于模糊神经网络的故障智能诊断系统模型。采取粒子群优化(PSO)算法和误差反向传播(BP)算法柏结合的方法训练该模型网络,充分发挥PSO全局寻优能力和BP局部细致搜索优势,提高了诊断的可靠性和准确性。实验结果证明了该方法的有效性。  相似文献   

10.
基于改进粒子群优化神经网络的电力变压器故障诊断   总被引:1,自引:1,他引:1  
为了提高电力变压器故障诊断的准确性,采用了一种自适应变异粒子群优化神经网络的方法,用于BP网络的权值优化。并根据变压器的故障特征,用优化好的BP网络进行故障诊断。该算法修正了粒子个体行动,克服了标准粒子群和BP网络易陷入局部极小的问题。实例仿真结果表明,该方法具有较好的分类效果,具有一定的实用性。  相似文献   

11.
由于日前24点电价特性差异较大,采用单一模型很难描述,提出了一种基于相似点的日前电价预测新方法.将数据空间按时点划分成子24个子空间,并定量考虑对电价造成影响的相关因素,利用改进决策树技术对子空间的历史数据进行自动聚类,再通过粒子群算法训练各相关因素的最优权值,大大增加了选择相似点的可信度,仿真结果表明该方法能有效提高预测精度.  相似文献   

12.
基于遗传算法和径向基函数神经网络的短期边际电价预测   总被引:8,自引:4,他引:8  
文章分析了影响电价的主要因素及电价的变化特点,讨论了电价预测模型中必需引入的影响电价的因素。在比较常用的几种电价预测方法的优缺点后,作者采用径向基函数神经网络(radial basis function neural networks,RBF)建立短期边际电价预测模型,用递阶遗传算法(HGA)同时训练RBF网络结构和参数。并以美国New England ISO公布的2002年历史电价数据进行训练和测试,与传统的BP网络预测模型相比较, 测试结果证明该模型的预测精确度是令人满意的。  相似文献   

13.
以美国PJM电力市场为背景,利用历史负荷、系统剩余容量百分比和清算电价对未来时段电价的影响来进行短期电价预测,给出了一个发电侧竞价模型中利用PSO训练BP神经网络进行市场出清电价预测的实例。与使用传统BP神经网络预测的方法进行比较,结果表明,该方法具有更高的预测精度,并能收敛于全局最优解。  相似文献   

14.
余帆  沈炯  刘西陲 《电网技术》2008,32(8):63-67
针对日前电力市场提出了一种基于自回归条件异方差分析的改进神经网络模型。首先利用自回归条件异方差分析得到边际电价序列的条件方差,然后以条件方差作为电价波动风险指标,建立基于历史电价、历史负荷和历史电价条件方差等输入量的自回归条件异方差-反向传播网络模型,并利用该模型对美国PJM电力市场的日前边际电价进行了预测。结果表明,引入自回归条件异方差分析可以有效提高传统反向传播网络的预测精度。  相似文献   

15.
Successful bidding and operational strategies of electric power generators (GENCO) depend highly on the availability of accurate and timely load and price forecasts. Several techniques have been proposed and applied over the past few years to predict the marginal price of electricity in deregulated markets. To improve accuracy, these techniques apply time-consuming, complex, and hybrid methods requiring multiple inputs and large databases. This article introduces the first application of the method of “innovations” and a single artificial neural network to provide accurate forecasting results with mean absolute percentage error comparable to more complex and hybrid artificial neural network forecasting methods. The proposed model is applied to data of two seasons of Spain's power market operator (OMEL) marginal price data. The technique provided average accuracy improvement of 26% with overall mean absolute percentage error of 6.5%, which is reasonable considering the number of inputs and the simplicity of this model compared to other proposed models.  相似文献   

16.
针对短期负荷预测的特点,提出基于粒子群(PSO)优化的模糊神经网络短期负荷预测模型。将PSO与模糊优选人工神经网络进行融合,在对模糊优选神经网络训练中采取PSO算法和梯度下降算法相结合的方法,充分发挥PSO全局寻优的能力和梯度下降局部细致搜索优势。对广西某地区进行短期负荷预测,并与实际值进行比较分析,结果表明这一模型应用于短期负荷预测能获得较高的预测精度,是一种行之有效的短期负荷预测方法。  相似文献   

17.
师彪  李郁侠  于新花  闫旺  何常胜  孟欣 《电网技术》2009,33(17):180-184
为了准确、快速、高效地预测电网短期负荷,提出了改进的粒子群–径向基神经网络算法。用改进的粒子群算法训练径向基神经网络,实现了径向基函数神经网络的参数优化。建立了短期电力负荷预测模型,综合考虑气象、天气、日期类型等影响负荷的因素进行短期负荷预测。算例结果表明,该算法优于径向基神经网络法和粒子群–径向基网络算法,克服了径向基网络和粒子群优化方法的缺点,改善了径向基神经网络的泛化能力,输出稳定,预测精度高,收敛速度快,平均百分比误差可控制在1.2%以内。  相似文献   

18.
考虑多重周期性的短期电价预测   总被引:3,自引:1,他引:3  
考虑到电价各时段变化以及周末与工作日变化的差异,提出了区分周末的分时段短期电价预测模型。该模型首先将各日中同一时段的电价形成该时段的电价序列,再将各时段电价序列分为工作日电价序列和周末电价序列。这样形成了多个消除了日周期性和星期周期性的子电价序列,分别对各子电价序列进行预测以得到预测日电价。采用基于小波分析的广义回归神经网络对这些子电价序列分别进行提前一天的预测,各子电价序列的预测电价就形成了下一天的预测电价。采用该方法对西班牙电力市场电价进行了长时间的连续预测,并与已有的预测方法进行了详细的比较分析,研究表明该方法能够提供更准确的预测电价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号