首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
薛克敏  薄冬青  李萍 《材料导报》2018,32(8):1306-1310
对轧制态7A60铝合金在应变速率为0.1~0.01s-1、变形温度为250~350℃条件下热压缩的显微组织特征和流变应力进行实验研究。结果表明:随着应变速率的降低和温度的升高,材料的各向异性减弱,均匀性增强,晶粒发生明显粗化;在热变形的过程中该合金的主要软化机制为动态回复和动态再结晶,峰值应力随应变速率的增加而增大,随温度的升高而降低,在应变速率为0.01s-1时发生了明显的非连续动态再结晶行为。合金热变形的流变应力行为可用双曲正弦函数来表示,其热激活能为438.981kJ/mol。  相似文献   

2.
采用Gleeble-3500热模拟试验机对铸态7A85铝合金进行高温热压缩实验,研究了7A85铝合金在变形温度为300~450℃、应变速率为0.01~10s^(-1)条件下的流变行为与显微组织。结果表明:流变应力在变形初期迅速升至峰值,随后由于动态回复和动态再结晶有所降低,最后趋于稳态;峰值流变应力随变形温度的降低和应变速率的增加而增大,可用Zener-Hollomon参数描述。采用线性回归方法获得7A85铝合金高温条件下流变应力本构方程,其变形激活能Q为253.68kJ/mol。随着lnZ降低,晶粒沿径向拉长,亚晶长大,位错密度和第二相数量降低。软化机制主要为动态再结晶。  相似文献   

3.
通过热压缩实验、组织分析同时结合热力学和动力学计算方法,对700℃超超临界锅炉材料GH4700镍基合金组织演变进行研究,结果表明:GH4700镍基合金具有较高的变形温度和应变速率敏感性,随着变形温度的下降和应变速率的增大,合金的流变应力迅速升高,其动态再结晶形核方式为典型的应变诱导晶界迁移形核;其热变形激活能及晶粒长大激活能分别为345.0948kJ/mol和252.05kJ/mol。  相似文献   

4.
在Gleeble-3500热模拟实验机上对AA2195铝合金进行圆柱体单向压缩实验,变形温度为400~500℃,应变速率为0.01~10s~(-1)。通过金相(OM)以及电子背散射衍射(EBSD)技术研究了其热变形过程中显微组织的演变规律。研究结果表明,随着变形温度的升高和应变速率的降低,流变应力显著降低。当变形温度460℃,流变应力达到一个平台后,随应变增加,流变应力继续上升,这可能由动态再结晶内部位错密度的增加而导致。AA2195铝合金主要的再结晶方式为连续动态再结晶和不连续动态再结晶。变形温度的升高虽然抑制了连续动态再结晶,但是极大促进了不连续动态再结晶;应变速率的升高,连续动态再结晶和不连续动态再结晶体积分数都降低,且不连续动态再结晶主要集中在产生局部变形热的区域。  相似文献   

5.
使用圆柱形试样在Thermecmaster-Z型热模拟试验机上进行锻态TB6钛合金β相区的热压缩实验(变形温度950~1100℃,应变速率0.001~1 s-1),研究了合金的高温压缩变形和动态再结晶行为。结果表明,这种合金在β相区的变形激活能为246.7 kJ/mol,其热变形机制是动态再结晶,动态再结晶新晶粒的主要形核机制是弓弯形核。当应变速率为0.01~0.1 s-1、变形温度为<1000℃时动态再结晶的发展比较充分,变形组织明显细化;当变形温度高于1000℃、应变速率低于0.001 s-1时,动态再结晶的晶粒明显粗化。在动态再结晶的晶粒尺寸D与Z参数之间存在着相关性,其函数关系为D=6.44×102·Z-0.1628。  相似文献   

6.
7085铝合金热压缩变形的流变应力本构方程   总被引:1,自引:0,他引:1  
采用Gleebe-1500热模拟机对7085铝合金进行热压缩,研究了该合金在应变速率为1~38s-1、变形温度为260~440℃条件下的流变应力行为.结果表明,7085铝合金流变应力在变形初期随着应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随应变速率的增加而增加,随温度的升高而降低;通过线性回归分析计算出7085材料的应变硬化指数n以及变形激活能Q,获得了7085铝合金高温条件下的流变应力本构方程.  相似文献   

7.
6013铝合金热变形行为研究   总被引:7,自引:0,他引:7  
以6013铝合金为试验材料,采用热压缩镦粗法,在Gleeble-1500热模拟试验机上进行等温热压缩试验.结果表明:随变形速率增加和变形温度降低,合金的流变应力增加.随变形程度增加,流变应力先迅速增加到一峰值,然后缓慢下降到渐趋平稳,呈现明显动态再结晶特征.该合金的流变应力行为可用包含Arrhenius项的Zener-Hollomon参数来描述,其变形激活能Q为145.75kJ/mol.  相似文献   

8.
挤压态Mg-Gd-Y-Zn-Zr合金热变形行为研究   总被引:1,自引:1,他引:0       下载免费PDF全文
目的研究挤压态Mg-8.90Gd-5.11Y-3.10Zn-0.47Zr高强镁合金在变形温度300~500℃、应变速率为0.001~1 s-1之间的热变形行为。方法采用Gleeble试验机进行高温单轴压缩试验。结果流变曲线具有典型的动态再结晶特征,应力随应变速率的升高或变形温度的降低而增加。分别采用指数关系、幂指数关系与双曲正弦函数关系对热变形行为进行表征,拟合度最好的是双曲正弦函数关系,平均线性回归系数达到0.974 484。合金的变形激活能随着变形温度的升高呈现下降的趋势。结论热压缩行为可以采用双曲正弦函数关系进行表达,应力指数和平均热激活能分别为:n=3.860 86,Q=234.0476 kJ/mol。  相似文献   

9.
利用Gleeble-1500热模拟试验机进行单道次热压缩变形,通过控制变形温度(900,950,1 000,1 050℃)和应变速率(0.01,0.1和1 s-1)研究了23CrNi3Mo钢的动态再结晶行为,分析了变形温度、应变速率对动态再结晶行为和组织演变的影响.结果表明:23CrNi3Mo钢动态再结晶的再结晶激活能为293.23 kJ/mol;采用θ-σ模型较精确地获得了发生动态再结晶的临界应变与峰值应变,并确定了其平均比值εc/εp=0.63;确定了材料常数和热变形本构方程.通过对热模拟实验数据的分析和显微组织观察,建立了不同变形条件下动态再结晶模型和晶粒尺寸模型.  相似文献   

10.
采用Gleeble-1500热模拟试验机对一种中碳钒微合金钢在变形温度900~1 100℃、应变速率0.01~10 s-1条件下的热变形行为进行研究.分别建立了实验钢的幂律、指数和双曲正弦本构方程,观察了实验钢在不同变形条件下的显微组织,得出了实验钢的动态再结晶稳态晶粒尺寸和峰值应变与Zener-Hollomon参数的关系.结果表明:双曲正弦本构方程具有最高的拟合精度;实验钢热变形激活能Q为273.225 kJ/mol,与奥氏体的自扩散激活能(270 kJ/mol)十分接近,说明实验钢在此变形条件下的速率控制机制是扩散控制的位错攀移;显微组织观察表明,实验钢的动态再结晶行为受变形温度和应变速率的影响;拟合得出实验钢的动态再结晶稳态晶粒尺寸(Ds)和峰值应变与Z参数的关系为ln Ds=-0.200 31ln Z+7.941 65和lnεp=0.184 56ln Z-5.373 83.  相似文献   

11.
2124铝合金的热压缩变形和加工图   总被引:1,自引:0,他引:1  
采用热模拟实验研究2124铝合金在应变速率为0.01~10s-1、变形温度为340~500℃条件下的流变应力行为。结果表明:2124铝合金热变形过程中的流变应力可用双曲正弦本构关系来描述,平均激活能为170.13kJ/mol。根据动态材料模型,计算并分析2124铝合金的加工图。利用加工图确定热变形的流变失稳区,并且获得了实验参数范围内的热变形过程的最佳工艺参数,其热加工温度为450℃左右,应变速率为0.01~0.1s-1。  相似文献   

12.
采用Gleeble-1500热模拟试验机对含钪Al-Zn-Mg合金进行热压缩实验,研究了合金在不同热压缩条件下的热变形行为和显微组织。结果表明:合金的流变应力随应变速率的增大而增大,随变形温度的升高而减小。该合金热压缩变形的流变应力行为可用Zener-Hollomon参数来描述,其热变形激活能为150.25kJ/mol。在变形温度为380℃,应变速率为1s-1条件下,合金组织中存在大量的位错墙,表明发生了动态回复现象。随着变形温度的升高,当温度为500℃时,合金中出现了再结晶晶粒,说明主要软化机制逐步由动态回复转变为动态再结晶。  相似文献   

13.
采用Gleeble-1500D热模拟试验机对ZK60和ZK60-1.0Er镁合金进行了热压缩实验,分析了合金在温度为160~420℃,应变速率为0.0001~1.0s-1条件下的流变应力变化特征。结果表明:两种镁合金在热压缩过程中的流变应力随变形温度的降低和应变速率的升高而增加,在流变应力达到峰值后随即进入稳态流变;稀土Er的加入使得平均变形激活能珚Q值由183kJ/mol降到153kJ/mol,应力指数n值由6提高到8;发生动态再结晶的临界应力σc值随变形温度升高和应变速率降低而降低,在420℃/1.0s-1高温高应变速率时,稀土Er的加入使得ZK60镁合金发生动态再结晶的临界应力值σc由76MPa降到50MPa。通过动态模型构建热加工图并结合金相组织观察可知:稀土Er的加入缩小了ZK60镁合金的热加工失稳区,增加了热加工安全区的功率耗散效率峰值η_(max),由35%增大到45%,促进了动态再结晶晶粒的形核,但抑制了再结晶晶粒的长大。  相似文献   

14.
目的 研究Zr–2.5Nb合金热压缩后的应力–应变关系和合金变形激活能。方法 对Zr–2.5Nb进行高温压缩试验,分析变形条件(温度和应变速率)对该合金热变形行为的影响,研究高温压缩过程中Zr–2.5Nb合金的显微组织变化,并基于Arrhenius公式分析其变形激活能。结果 在低温、高应变速率条件下,Zr–2.5Nb合金应力由峰值快速降低直至达到稳态;在高温和低应变速率下,该合金的应力–应变曲线呈现动态再结晶特征,合金平均变形激活能为468.962 kJ/mol,硬化指数为5.41。结论 在850~1 000 ℃下进行不同应变速率的热压缩变形时,高温低应变速率有利于Zr–2.5Nb动态再结晶的发生;同一温度条件下,低应变速率时合金变形激活能较小,有利于Zr–2.5Nb合金发生塑性变形。  相似文献   

15.
利用Gleeble-3500热模拟试验机对Mg-9Al-3Si-0.375Sr-0.78Y合金试样进行等温恒应变速率压缩实验,研究其在温度250~400℃、应变速率0.001~10s~(-1)条件下的热变形行为。结果表明:在热变形过程中,峰值应力随着应变速率的降低和温度的升高而减小,且峰值应力对应变速率的敏感性随着变形温度的下降而增强。建立了考虑应变的热变形Arrhenius本构模型,模型精度良好,在300,350℃及0.001~10s~(-1)范围内,模型的平均绝对误差分别为1.57%和1.76%;合金的平均变形激活能为183.58k J/mol,平均应变速率敏感指数为0.1616。热变形过程中,α-Mg相呈现明显的动态再结晶特征,β-Mg17Al12相尺寸减小且分布均匀,初生Mg_2Si相较小。在低温(250~300℃)变形时,动态再结晶仅发生在晶界处。在高温(350~400℃)变形时,初生α-Mg晶粒发生了明显的动态再结晶。随着温度的增加和应变速率的降低,再结晶程度提高,再结晶晶粒逐渐长大。  相似文献   

16.
使用热模拟试验机在1123~1423 K/0.01~10 s-1变形条件下对18.5%对Cr高Mn节镍型双相不锈钢进行了变形量为70%的大变形热压缩,研究其在热变形过程中两相的亚结构特征和软化机理。结果表明,在0.01~0.1 s-1/1123~1223 K范围的热压缩软化以铁素体相的再结晶为主,而在0.1 s-1/1323~1423 K和10 s-1/1223 K范围的热压缩软化以奥氏体相的再结晶为主。在变形温度为1223 K、应变速率由0.01 s-1增大到10 s-1的条件下铁素体相内的位错缠结向胞状结构演化并出现位错线,奥氏体相内的亚结构则转变为细小的再结晶晶粒。应变速率为0.1 s-1、变形温度由1123 K提高到1323 K时铁素体相内的位错增加,变形晶粒向胞状组织演化而奥氏体相内的位错减少,由回复组织转变为再结晶组织。根据热变形方程计算出表观应力指数n=7.13,热变形激活能Q=514.29 kJ/mol,并建立了Z参数关系本构方程。根据加工硬化率得到再结晶临界条件,并确定了Z参数与再结晶临界条件的关系。对热加工图的分析结果表明,随着变形量的增大失稳区逐渐减小,最佳加工区域为1348~1423 K/1~10 s-1,功率耗散系数大于0.4。  相似文献   

17.
在Gleebe-1500热力模拟机上,采用双道次间隙式等温热压缩实验,对ZK60镁合金双道次热变形过程中的道次间软化规律进行了研究.变形温度为200℃和300℃,应变速率为0.005s-1和0.05s-1,道次间隙停留时间在1~300s之间变化.结果表明:材料在变形道次间的主要静态软化机制是亚动态再结晶,建立了亚动态再结晶动力学模型,相应的亚动态再结晶激活能约为50.12kJ/mol,远小于动态再结晶激活能.  相似文献   

18.
黄光杰  钱宝华 《材料导报》2007,21(Z2):368-369
通过MTS试验机进行等温压缩实验,变形温度范围473~623 K、应变速率范围0.001~1 s-1,研究了AZ31镁合金的流变应力行为及其微观组织的演变规律.结果表明,变形温度、应变速率与峰值应力之间的相互关系可用指数模型来描述,其激活能约为138.13kJ/mol,而动态再结晶则是该合金在热变形过程中的主要软化机制和晶粒细化手段.  相似文献   

19.
利用Gleeble-1500D热模拟试验机对SiC_p/Al-Cu复合材料进行压缩实验,研究其在温度为350~500℃、应变速率为0.01~10s-1条件下的高温塑性变形行为。由实验得出变形过程中的应力-应变曲线,建立了热变形本构方程和加工图。结果表明:复合材料高温流动应力-应变曲线主要以动态再结晶为特征,峰值应力随变形温度的降低或应变速率的升高而增加。其热压缩变形时的流变应力可采用Zener-Hollomon参数的双曲正弦形式来描述,在实验条件下平均热变形激活能Q为320.79kJ/mol。确定了加工图中的稳定区和失稳区,分析了加工图中不同区域的显微组织结构,失稳区存在颗粒破裂、孔洞等。  相似文献   

20.
BFe10-1-1合金管是制造冷凝器的关键材料,主要采用热挤压方法成形.为了制定该合金的热挤压工艺,并为其挤压成形的数值模拟分析提供热力学参数,在Gleeble-1500动态热模拟机上进行高温等温压缩试验,研究了BFe10-1-1合金在高温塑性变形过程中的流变应力行为.试验温度为800~950℃,应变速率为0.1~20 S-1.研究结果表明,BFe10-1-1合金的流变应力随变形温度的增加而减小,随应变速率的增大而增大;随着应变速率越大,动态再结晶软化现象更为明显;获得了采用Zener-Hollomon参数来描述的BFe10-1-1合金高温变形的峰值应力方程,计算获得该合金变形激活能Q为182.68 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号