首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了获得工业包装用高强高韧铝合金材料,采用喷射成形快速凝固技术和大压下量轧制技术制备了Al-9Mg合金板材。采用透射电镜、扫描电镜(采用EBSD技术)和X射线衍射仪测定了挤压态和轧制态Al-9Mg合金板材的微结构及织构特征,并测试了板材的各向异性行为。试验结果表明:大压下量交叉轧制CBA促进了动态再结晶的发生,细化了晶粒组织,显著提高了大角度晶界的比例;与挤压态和AAA轧制方式相比较,CBA轧制方式显著降低了挤压态合金中典型的Brass织构{110}112的取向密度,在β取向线上CBA轧制态板材中的Brass织构取向密度最低,且板材中没有典型的织构特征;同时,CBA轧制态合金板材具有更好的深冲性能,在3个方向0°,45°和90°的力学性能基本一致,其室温拉伸强度和伸长率分别在592MPa和19.6%以上。  相似文献   

2.
采用异步轧制、多向异步轧制、高温异步轧制、高温多向异步轧制四种不同的方式轧制双相镁锂合金板材。通过光学显微镜、MTS E43拉伸试验机和X射线衍射仪观察不同工艺轧制后合金的显微组织、力学性能以及织构特征,综合分析温度和轧制方向条件耦合对镁锂合金组织和力学性能的影响。结果表明:四种轧制工艺可以使α-Mg相沿轧制方向伸长,同时沿着轧制方向法向细化。高温多向异步轧制后α相厚度最低为2.6μm。多向异步轧制后材料的屈服强度、抗拉强度、伸长率分别为149,167 MPa,14.5%,其综合力学性能最优。多向轧制使双峰织构沿ND方向45°偏转,高温轧制使双峰织构由基极向RD方向偏转的角度降低。轧制后样品R-cube织构组分最强,高温多向异步轧制使β-Li相轧制织构转变成为{001}〈100〉织构,有利于{011}〈111〉滑移系发生多滑移。  相似文献   

3.
为了得到高份额立方织构金属基带,同时兼顾居里温度和屈服强度的要求,设计了Ni-7.8%Cr-1.1%Mo-1.6%W(原子分数)合金。采用冷坩埚悬浮熔炼技术冶炼合金铸锭,铸锭经过锻造、热轧、冷轧和再结晶退火,最终得到厚度为100μm的合金薄带。采用电子背散射衍射(EBSD)技术对合金薄带再结晶织构进行了表征,并研究了其磁性能及力学性能。结果表明:经大变形量冷轧和优化的两步法退火后Ni-7.8%Cr-1.1%Mo-1.6%W合金薄带立方织构份额为93.4%,小角晶界体积分数为84.5%;合金薄带的居里温度为25K,远低于77K;合金薄带室温下的屈服强度为182 MPa,与Ni-5%W合金相当,且抗拉性能十分优异。  相似文献   

4.
目的 为了使Mg–Zn–Zr合金在热加工过后具有良好的力学性能及变形各向同性,在Mg–2Zn–0.5Zr合金中添加不同含量的稀土元素,研究稀土元素对Mg–2Zn–0.5Zr合金轧制后微观组织和力学性能的影响规律,以解决变形镁合金织构强、变形各向异性强的问题。方法 通过添加不同含量(0.2%和0.8%,质量分数)的混合稀土元素,采用轧制的方法制备镁合金板材。通过SEM(扫描电子显微镜)、EDS(能谱仪)、EBSD(背散射电子衍射)和电子万能试验机等对镁合金板材的成分、微观组织、织构以及拉伸过程中的应力–应变曲线进行分析。结果混合稀土元素的添加会明显提高Mg–Zn–Zr合金板材的轧制成形性,可以起到细化晶粒、弱化轧制织构的作用,能够提高材料的伸长率并改善力学性能的各向异性。混合稀土元素会与Mg、Zn在晶界处形成第二相,但并不会影响稀土元素的织构弱化效果。与较低稀土元素(质量分数为0.2%)时相比,当混合稀土元素含量较高时(质量分数为0.8%),合金材料的力学性能各向异性更优,这主要是由于添加较多的稀土元素,形成了{■}织构,使添加较多稀土元素的合金材料的织构强度更强。结论 随着混合稀土元素...  相似文献   

5.
金属钼是一种硬而坚韧的难熔金属,熔点高达2620℃,具有良好的耐腐蚀、抗蠕变和抗热震性,被广泛应用于航空航天、核工业及电子产业.钼及钼合金常通过粉末冶金制备,避免传统工艺制备工序复杂的同时保证了钼及钼合金的成分及成品质量.其体心立方结构和塑脆转变温度高,严重影响了钼和钼合金的成型加工性能及由资源向钼成品转化的经济效益.成型加工中常使用锻造和轧制手段进行变形,但是会造成严重的加工硬化.热处理工艺能简单有效地改善钼金属在加工过程中的残余应力、加工硬化等不利影响,提升产品的质量与性能.钼合金变形过程中,单向轧制时会产生{111}织构,在较高的变形量下,织构发生偏转,转至{112}<110>;交叉轧制时趋向{100}织构.轧制变形量为40%~90%,1200℃退火处理后钼合金板材均会完成再结晶,当温度升至1250℃以上时晶粒变得粗大,无论是单向轧制织构还是再结晶期间织构转化时<110>织构均会存在.加热速率较快(>100 K/min)的情况下,钼合金的晶粒尺寸更细小.钼中掺入Ti、Zr、La等元素,会在亚晶界或晶界处形成碳化物或氧化物,改变微观组织,提升了再结晶温度,热处理后断裂方式从脆性断裂转变为韧性解理断裂,提升了钼合金的综合力学性能.本文综述了纯钼和钼合金板材的变形量、热处理工艺参数对其组织和性能影响的研究,对简化、有效生产高质量的钼板材过程给予理论指导,同时削减热处理能耗,有助于发展绿色热处理技术,并对未来钼板材热处理研究方向提出了展望.  相似文献   

6.
应用EBSD技术研究了Ti6321合金板材的织构特征,并对其力学性能进行了实验分析。结果表明:退火态的Ti6321合金板材横向屈服强度和抗拉强度均略高于轧向的,但塑性和冲击韧性略低于轧向的。该24mm厚退火态Ti6321合金板材织构的主要组分为{0111}2110、{2120}3412和{2021}3414,织构是造成板材力学性能各向异性的主要原因。  相似文献   

7.
对均匀化态2024铝合金进行不同终轧温度的热轧处理,经固溶后再进行为期4 d的自然时效。通过背散射电子衍射(EBSD)、X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学实验研究了终轧温度对2024铝合金力学性能和晶间腐蚀行为的影响。结果表明,轧态2024铝合金内存在剪切织构和少量再结晶织构,而固溶后出现了部分典型轧制织构。终轧温度影响合金组织和织构变化。终轧温度较低(207℃)时合金的平均晶粒尺寸和平均Schmid因子小,强度高;终轧温度较高(280℃)时合金小角度晶界和{111}面织构占比高,具有较大Schmid因子的织构含量少,抗晶间腐蚀性能优良。  相似文献   

8.
采用拉伸性能、显微组织、化学成分以及扫描电镜组织、电子背散射衍射和织构分析等手段,研究了80mm厚7150-T7751合金厚板不同厚度层纵向和横向的组织和性能。结果表明:80mm厚7150-T7751合金厚板不同厚度层的组织和力学性能有明显的不同,且并非成分宏观偏析造成的;厚板内部的力学性能存在各向异性,且不同厚度层各向异性的特点不同,板材中心层的纵向强度显著比横向强度大,板材1/4厚度层不仅其纵向强度最小而且还小于其横向强度;板材的中心层的轧制变形程度虽小,但固溶时效后的织构却较强;7150-T7751合金具有合适织构的粗大长状再结晶晶粒与细小等轴晶组织匹配时,在沿粗大晶粒长度的方向可获得较高的强度。  相似文献   

9.
研究了TA5合金板材的加工、退火及热矫形工艺对组织和力学性能的影响。结果表明:板坯第2火次锻造在相变点以上150℃变形,造成板材组织粗化,呈纤维状,强度非常高,塑性变化不大;换向轧制的板材组织均匀等轴化,再结晶晶粒尺寸增加,强度显著降低,塑性明显升高;随着精轧温度的升高,再结晶晶粒均匀化长大趋势明显,板材强度降低,塑性升高;为了避免热矫形过程对板材组织性能的影响,退火温度应高于热矫形过程中的料温;板材经过二次或三次热矫形后,不平度可达到(2~3) mm/m,室温力学性能基本不变。   相似文献   

10.
对Mg-Zn-Zr合金进行高应变速率多向锻造变形,研究了其组织演变和力学性能。结果表明,高应变速率多向锻造工艺能强烈细化合金的晶粒组织,形成由蜂窝状粗大再结晶组织和岛状细小再结晶组织构成的新颖组织,初始晶界附近和初始晶粒内部的再结晶机制分别是旋转动态再结晶和孪生诱发动态再结晶。由于高应变速率多向锻造工艺具有强烈的晶粒细化能力并能有效避免强烈的基面织构,可大幅提高合金的综合力学性能。累积应变∑Δε=2.64时,ZK21和ZK60抗拉强度、屈服强度和延伸率分别为341.6 MPa、270.7 MPa、25.1%和330.2 MPa、232.3 MPa、24.8%。  相似文献   

11.
研究了变形Mg-1.5Zn-0.2Gd合金在热轧和退火过程中的显微组织、织构以及室温成形性能。结果表明:Mg-1.5Zn-0.2Gd合金经过热轧、退火后,其织构得到明显弱化并且沿着TD方向发生分裂,使得合金在室温下具有较高的断后伸长率和成形能力。450℃热轧后合金的基面织构强度最大值为3.4,RD方向上伸长率仅为6.7%;然而,合金经过350℃/60min退火后基面织构强度明显降低,最大值仅为2.3,并且基面织构沿着TD方向发生分裂,RD方向上伸长率达到26.7%。EBSD研究表明,稀土Gd元素溶入合金中,阻碍了热轧过程中动态再结晶的发生,在随后的退火过程中,非基面取向晶粒在原始大角度晶界位置形核长大,这是Mg-1.5Zn-0.2Gd合金织构得到优化的关键原因。  相似文献   

12.
为确定最优的极薄带轧制工艺,本研究深入分析了强剪切对轧制单层晶极薄带微观变形行为和晶体转动演化的影响。采用基于位错滑移机制的晶体塑性有限元模型进行模拟,最大异速比达到1.5。建立了晶粒取向随机分布的单层晶极薄带轧制模型,以探究少晶组织的晶界作用特性。结果表明:强剪切导致单层晶极薄带轧制微观变形和晶体转动表现出显著的局部化。强剪切促进了晶粒的剪切变形,使得晶界的协调变形能力增强。在轧制区施加强剪切变形,可使已启动滑移得到扩展,主滑移带缩窄分散形成新的次滑移带,滑移更加集中和各向异性。变形后晶粒取向主要绕箔材宽度方向发生转动和分散,强剪切使转动角度增大和分散点更加集中稳定。模拟表明强剪切严重影响单层晶极薄带轧制变形的各向异性,进而导致择优取向、滑移局部化以及非均匀应力-应变分布。  相似文献   

13.
研究了不同热处理条件下Ti65钛合金板材的显微组织和织构的变化规律,分析了板材织构的类型和热处理影响拉伸强度的机制。结果表明,热处理对板材的显微组织和织构类型具有显著的影响。通过热处理可分别得到具有等轴组织、双态组织或片层组织的板材。等轴组织板材的织构为晶体c轴与板材RD方向呈现70°~90°夹角的B/T型织构,双态组织和片层组织板材的主要织构类型与等轴组织类似,且出现晶体学c轴与RD方向平行的织构。双态组织板材内的位错和亚结构使板材的室温拉伸强度提高,但是对高温拉伸变形的阻碍能力有限。板材中的织构是影响合金力学性能各向异性的主要因素。经980℃/1 h/AC+700℃/4 h/AC热处理后的板材横、纵向拉伸强度的差异最小,且都具有较高的室温拉伸性能和最佳的650℃拉伸性能。  相似文献   

14.
利用光学显微镜和扫描电子显微镜分析了热轧态及退火态Mg-3Zn-2Gd合金的组织,并测试了其室温拉伸力学性能。结果表明:合金板材经应变为23%~67%的轧制后组织得到细化,平均晶粒尺寸由10μm减至轧制应变为67%时的4μm。初始组织中的大量孪晶和剪切带逐渐减少;随着轧制应变增至67%,剪切带消失,组织由动态再结晶晶粒和少量孪晶组成。拉伸力学性能显著提高,抗拉强度σb和屈服强度σ0.2分别由未轧制时的255 MPa和215 MPa提高至轧制应变为67%时的305 MPa和300 MPa,而伸长率δ先提高后降低。再经573 K退火处理1 h后,合金组织发生静态再结晶,变形不均匀区域消失,由细小均匀等轴晶组成;σb和σ0.2分别降至265 MPa和235 MPa,δ提高至19.0%;拉伸断口呈现大量韧窝,表现为韧性断裂。  相似文献   

15.
Ti-5322是一种低成本的高强钛合金。本工作研究了β温区开坯的Ti-5322钛合金在α+β相区经不同变形量轧制板材后的组织及拉伸性能。显微组织的分析表明,当成品轧制变形量在50%时,合金板材呈现为具有连续晶界的网篮结构;当轧制变形量为75%时,合金板材呈现为包含球状及棒状α相组成的双态组织,晶界不连续。热处理后的拉伸性能测试结果显示,较大的轧制变形量有利于提高合金板材的强度与塑性的匹配。  相似文献   

16.
AlCoCrFeNi2.1共晶高熵合金是由体心立方相和面心立方相交替排布的层片状组织构成。这种独特的组织形式使其具有良好的力学性能,从而受到广泛关注。以粗大层片状存在的硬脆体心立方相限制了AlCoCrFeNi2.1共晶高熵合金力学性能的进一步提升。本工作基于此提出使用热轧及退火处理的方法对铸态AlCoCrFeNi2.1高熵合金进行轧制改性处理,从而进一步提升AlCoCrFeNi2.1共晶高熵合金的力学性能。本试验热轧温度分别选取800℃、1 000℃和1 200℃,通过力学性能测试、X射线衍射相分析、组织分析等相关试验,探究不同温度对AlCoCrFeNi2.1共晶高熵合金性能的影响。结果表明:经轧制后材料的抗拉强度和延伸率均得到提高,轧制温度为800℃时材料的抗拉强度为1 475 MPa、延伸率为20.4%,性能提升最佳,较铸态合金分别提升46.8%和32.5%;轧制温度为1 000℃时性能提升最弱;三种温度下硬度变化规律与强度变化规律一致,经800℃轧制后材料硬度值达到最大值...  相似文献   

17.
利用凸耳实验、X射线衍射仪、EBSD等手段研究了热轧退火后常规轧制(NR)、横向轧制(TR)、交叉轧制(AR)等轧制方式对6016铝合金组织和平面各向异性的影响。结果表明:热轧退火后6016铝合金形成了强烈的立方织构{100}〈001〉。NR,TR冷轧板具有38%~44%的β取向线织构(主要包括铜,S,黄铜织构组分),但是AR冷轧后保留了12.2%的立方织构组分,变形织构组分很弱,因此AR冷轧板材制耳率最差,为7.1%。6016铝合金经过固溶处理后,NR,TR板形成9.12%强烈的立方织构,AR板的织构明显弱化且随机分布,因而AR再结晶退火板制耳率较NR,TR板的6%~8.16%明显降低,为2.76%。固溶处理后6016铝合金板的平均晶粒尺寸分别为23,25,22μm,AR轧制后合金的晶粒最小且分布最均匀。因此交叉轧制能有效改善6016铝合金板再结晶退火后的组织均匀性和塑性各向异性。  相似文献   

18.
研究了Ti60合金板材的组织、织构随热处理温度的变化规律及其对室温强度的影响。结果表明:对于Ti60合金板材,与轧制态相比,在α单相区热处理后显微组织和织构基本不变;随着热处理温度由α+β两相区升高到β单相区,等轴初生α相体积分数减少直至完全转变为片层次生α相,T型织构成分逐渐消失,并形成新的织构。在热处理温度下初生α相的体积分数,是决定是否形成新织构的主要因素:初生α相大量存在时次生α相的取向与之相近;初生α相体积分数减少对次生α相取向的影响减弱,次生α相的{0001}晶面易形成新的集中取向,与高温轧制变形后形成的β相织构有关。板材同一方向(TD或RD)的室温强度变化主要受晶内亚结构的影响:α单相区热处理后未消除晶内亚结构,板材的室温强度与轧态接近;α+β两相区和β单相区热处理消除了晶内亚结构,使强度明显降低。消除晶内亚结构后,板材相同方向的室温强度受显微组织的影响较小:初生α相体积分数的减少对室温强度没有明显的影响,在两相区不同温度热处理的板材其室温强度相当,β单相区热处理后板材的室温强度呈降低趋势,但是不同方向上的降低幅度受织构的影响较大。织构和晶内亚结构共同影响板材室温强度的各向异性,在晶体学c轴集中取向的方向上强度较高,晶内亚结构的存在弱化织构对拉伸强度各向异性的影响,在两相区和β单相区热处理消除了晶内亚结构,使板材的各向异性增强。  相似文献   

19.
通过轧制温度、轧制方式实验,以及织构和力学性能分析,研究了轧制工艺对液晶显示背光源用的深冲钼带的组织和性能的影响.结果表明:采用低温开坯,然后低温两次交叉轧制,再进行一次交叉轧制的工艺,使钼带在1 000℃退火后具有很强的{001}〈011〉板织构和弱的〈111〉丝织构;钼带纵、横向组织几乎完全一致,都为细小均匀、相互搭接的纤维状组织;钼带经过消除应力退火后,纵、横向不仅都具有较高并相近的延伸率,而且强度也相近,杯突值较高.由于强度和硬度适中,各项性能形成了很好的匹配,使钼带各向异性大大减弱,深冲性能良好.  相似文献   

20.
利用凸耳实验、X射线衍射仪、EBSD等手段研究了热轧退火后常规轧制(NR)、横向轧制(TR)、交叉轧制(AR)等轧制方式对6016铝合金组织和平面各向异性的影响。结果表明:热轧退火后6016铝合金形成了强烈的立方织构{100}〈001〉。NR,TR冷轧板具有38%~44%的β取向线织构(主要包括铜,S,黄铜织构组分),但是AR冷轧后保留了12.2%的立方织构组分,变形织构组分很弱,因此AR冷轧板材制耳率最差,为7.1%。6016铝合金经过固溶处理后,NR,TR板形成9.12%强烈的立方织构,AR板的织构明显弱化且随机分布,因而AR再结晶退火板制耳率较NR,TR板的6%~8.16%明显降低,为2.76%。固溶处理后6016铝合金板的平均晶粒尺寸分别为23,25,22μm,AR轧制后合金的晶粒最小且分布最均匀。因此交叉轧制能有效改善6016铝合金板再结晶退火后的组织均匀性和塑性各向异性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号