首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of cycling frequency on fatigue behavior of neat, talc filled, and short glass fiber reinforced injection molded polymer composites was investigated by conducting load-controlled fatigue tests at several stress ratios (R = −1, 0.1, and 0.3) and at several temperatures (T = 23, 85 and 120 °C). A beneficial or strengthening effect of increasing frequency was observed for some of the studied materials, before self-heating became dominant at higher frequencies. A reduction in loss tangent (viscoelastic damping factor), width of hysteresis loop, and displacement amplitude, measured in load-controlled fatigue tests, was observed by increasing frequency for frequency sensitive materials. Reduction in loss tangent was also observed for frequency sensitive materials in DMA tests. It was concluded that the fatigue behavior is also time-dependent for frequency sensitive materials. A Larson–Miller type parameter was used to correlate experimental fatigue data and relate stress amplitude, frequency, cycles to failure, and temperature together. An analytical fatigue life estimation model was also used to consider the strengthening effect of frequency in addition to mean stress, fiber orientation, and temperature effects on fatigue life.  相似文献   

2.
This paper evaluates the fatigue life properties of low carbon grey cast iron (EN-GJL-250), which is widely used for automotive brake discs. Although several authors have examined mechanical and fatigue properties at room temperatures, there has been a lack of such data regarding brake discs operating temperatures. The tension, compression and low cycle fatigue properties were examined at room temperature (RT) and at brake discs’ working temperatures: 500 °C, 600 °C and 700 °C. The microstructure of the material was documented and analysed. Tensile stress–strain curves, cyclic hardening/softening curves, stress–strain hysteresis loops, and fatigue life curves were obtained for all the above-mentioned temperatures. It was concluded, that Young’s modulus is comparable with both tension and compression, but yield its strength and ultimate strength are approximately twice as great in compression than in tension. All the mechanical properties remained quite stable until 500 °C, where at 700 °C all deteriorated drastically. During fatigue testing, the samples endured at 500 °C on average at around 50% of cycles at room temperature. Similar to other materials’ properties, the cycles to failure have dropped significantly at 700 °C.  相似文献   

3.
Low temperature can be a significant problem affecting safety and maintenance of railway. In this study, the fatigue crack growth rate and rolling contact fatigue damage behaviors of high-speed rail material under different temperature conditions were investigated by a series of experiments. The results indicate that the stress and strength of rail material increase with the decrease of ambient temperature. The crack growth rate at 0 °C and − 20 °C is similar with that at 20 °C. While, when the temperature decreases to − 60 °C, the growth rate of crack increases sharply. The promotion of rail embrittlement at low temperature accompanied with the action of high stress causes the rapid failure and increase of surface crack length and subsurface crack damage. Meanwhile, three crack growth mechanism models at different temperatures can be inferred. The brittle fracture mode is increasingly apparent with the temperature decreasing.  相似文献   

4.
This paper investigates the anisotropic properties of short glass fibre reinforced polyamide 6.6 (PA66-GF35) under tension–tension and tension–compression cyclic loading. Tensile fatigue tests were carried out on dog-bone specimens, machined out from injection-moulded plates 80 × 80 mm, of three different thicknesses t (1 and 3 mm) at three different nominal fibre orientation angles θ (0°, 30° and 90°). The tests were carried out at RT as well as at 130 °C.The Tsai–Hill failure criterion, modified to account for cyclic loading, is applied to the fatigue data for estimating the fatigue strength parameters of the material under investigation. Results are compared to the strength parameters obtained under quasi-static loading in a previous part of this work [De Monte M, Moosbrugger E, Quaresimin M. Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6 – quasi-static loading. Composites: Part A, 2010;41(10):1368–79]. The experimental results highlight how specimen thickness remarkably affects mechanical properties: the thinner the specimen the higher will be the degree of anisotropy. Also temperature strongly reduces the fatigue strength under cyclic loading. The Tsai–Hill criterion allows for an adequate fitting of experimental data at the investigated temperatures and load ratios.  相似文献   

5.
Rotating bending (52.5 Hz) and ultrasonic (20 kHz) fatigue tests were performed on the specimens of a bearing steel, which were quenched and tempered at 150 °C, 300 °C, 450 °C and 600 °C, respectively, to investigate the influence of strength level and loading frequency on the fatigue behavior in very-high-cycle regime. Influences on fatigue resistance of materials, characteristics of SN curves and transition of crack initiation site were discussed. The specimens with higher strength showed interior fracture mode in very-high-cycle regime and with slight frequency effect, otherwise cracks all initiate from the surface and the fatigue strength was much higher under ultrasonic cycling.  相似文献   

6.
This paper studies the fatigue behavior of basalt fiber reinforced epoxy polymer (BFRP) composites and reveals the degradation mechanism of BFRP under different stress levels of cyclic loadings. The BFRP composites were tested under tension–tension fatigue load with different stress levels by an advanced fatigue loading equipment combined with in-situ scanning electron microscopy (SEM). The specimens were under long-term cyclic loads up to 1 × 107 cycles. The stiffness degradation, SN curves and the residual strength of run-out specimens were recorded during the test. The fatigue strength was predicted with the testing results using reliability methods. Meanwhile, the damage propagation and fracture surface of all specimens were observed and tracked during fatigue loading by an in-situ SEM, based on which damage mechanism under different stress levels was studied. The results show the prediction of fatigue strength by fitting SN data up to 2 × 106 cycles is lower than that of the data by 1 × 107 cycles. It reveals the fatigue strength perdition is highly associated with the long-term run-out cycles and traditional two million run-out cycles cannot accurately predict fatigue behavior. The SEM images reveal that under high level of stress, the critical fiber breaking failure is the dominant damage, while the matrix cracking and interfacial debonding are main damage patterns at the low and middle fatigue stress level for BFRP. Based on the above fatigue behavior and damage pattern, a three stage fracture mechanism model under fatigue loading is developed.  相似文献   

7.
The tensile and fatigue behavior of superelastic shape memory alloy (SMA) bars heat-treated at three different temperatures were examined. Low cycle fatigue tests at variable load rates were carried out to determine the effect of stress and frequency on residual strain and energy dissipation in a fatigue cycle. The mechanism of energy dissipation was studied by monitoring the temperature changes in the fatigued samples as a function of applied stress and frequency of testing. Results from the tensile tests revealed that the stress for the Austenite to Martensite transformation decreased from 408 MPa to 204 MPa with an increase in temperature of heat treatment from 300 to 450 °C. The ultimate strength of the SMA increased from 952 MPa to 1115 MPa when the heat treatment temperature was increased from 300 to 450 °C. Fatigue testing prior to conducting the tensile test decreased the ultimate strength of the SMA and also reduced the failure strain. The energy dissipation in fatigue tests was found to decrease as test frequency increased from 0.025 Hz to 0.25 Hz and the change in sample temperature during the test at the lower test frequency was found to be considerably higher than at the higher frequency.  相似文献   

8.
Mechanical behavior of hot rolled Mg–3Sn–1Ca (TX31) magnesium alloy sheets were studied in the temperature range 25–350 °C. The microstructure of the alloy consisted of the eutectic structure of α-Mg + Mg2Sn and a dispersion of needle-like CaMgSn. The highest room-temperature ductility of 18% was obtained by hot rolling of the cast slabs at 440 °C, followed by annealing at 420 °C. The high temperature tensile deformation of the material was characterized by a decrease in work hardening exponent (n) and an increase in strain rate sensitivity index (m). These variations resulted in respective drops of proof stress and tensile strength from 126.5 MPa and 220 MPa at room temperature to 23.5 MPa and 29 MPa at 350 °C. This was in contrast to the ductility of the alloy which increased from 18% at room temperature to 56% at 350 °C. The observed variations in strength and ductility were ascribed to the activity of non-basal slip systems and dynamic recovery at high temperatures. The TX31 alloy showed lower strength than AZ31 magnesium alloy at low temperatures, while it exhibited superior strength at temperatures higher than 200 °C, mainly due to the presence of thermally stable CaMgSn particles.  相似文献   

9.
Three types of welded joints have been assessed with regard to their fatigue strength based on the mean-stress damage parameter model according to Smith, Watson, and Topper (PSWT) and on the reference notch radius concept. These analyses were performed with three different stress ratios, R = −1, R = 0 and R = 0.5, under axial loading. For each stress level, the corresponding Neuber-Hyperbolas, Masing-loops and their maximum stress and maximum strain values were determined in order to calculate damage parameter (PSWT) values. For a given weld geometry, this damage parameter is able to unify the fatigue results for different R-values within at a tight scatter band and therefore to consider the mean-stress effect. The unification of the results for different weld geometries is performed by applying the reference radii rref = 0.05 and rref = 1.00 mm as suggested by the IIW-Recommendations.  相似文献   

10.
C/SiC–ZrB2 composites prepared via precursor infiltration and pyrolysis (PIP) were treated at high temperatures ranging from 1200 °C to 1800 °C. The mass loss rate of the composites increased with increasing annealing temperature and the flexural properties of the composites increased initially and then decreased reversely. Out of the four samples, the flexural strength and the modulus of the specimen treated at 1400 °C are maximal at 216.9 MPa and 35.5 GPa, suggesting the optimal annealing temperature for mechanical properties is 1400 °C. The fiber microstructure evolution during high-temperature annealing would not cause the decrease of fiber strength, and moderate annealing temperature enhanced the thermal stress whereas weakened the interface bonding, thus boosting the mechanical properties. However, once the annealing temperature exceeded 1600 °C, element diffusion and carbothermal reduction between ZrO2 impurity and carbon fibers led to fiber erosion and a strong interface, jeopardizing the mechanical properties of the composites. The mass loss rate and linear recession rate of composites treated at 1800 °C are merely 0.0141 g/s and 0.0161 mm/s, respectively.  相似文献   

11.
Effect of stress ratio on fatigue properties of a titanium alloy (TC-17) in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) were investigated by electromagnetic and ultrasonic fatigue testing. The SN curves at R = −1, 0.1, 0.5 and 0.7 at 110 Hz and 20 kHz were obtained and discussed. The effects of frequency on fatigue strength was also investigated. It was concluded that the fatigue strength with 50% fatigue failure probability at R = 0.1, 0.5 and 0.7 is lower to the Goodman line and shows a bilinear decreasing trend. Cleavage fracture of primary grains in the surface and interior initiation zone were observed. The formation of the facets induced by the basal or prismatic slips of the H.C.P grains decreased the fatigue strength with variation in mean stress.  相似文献   

12.
This paper reports the accelerated thermal ageing behaviors of pure epoxy resin and 3-D carbon fiber/epoxy braided composites. Specimens have been aged in air at 90 °C, 110 °C, 120 °C, 130 °C and 180 °C. Microscopy observations and attenuated total reflectance Fourier transform infrared spectrometry analyses revealed that the epoxy resin oxidative degradation only occurred within the surface regions. The surface oxidized layer protects inner resin from further oxidation. Both the resin degradation and resin stiffening caused by post-curing effects will influence the compression behaviors. For the braided composite, the matrix ageing is the main ageing mode at temperatures lower than glass transition temperatures (Tg) of the pure epoxy resin, while the fiber/matrix interface debonding could be observed at the temperatures higher than Tg, such as the temperature of 180 °C. The combination of matrix degradation and fiber/resin interface cracking leads to the continuous reduction of compressive behaviors.  相似文献   

13.
Effects of frequency on fatigue behavior of a chemical vapor infiltrated carbon fiber reinforced silicon carbide composite (C/SiC) were investigated at an elevated temperature of 550 °C. Tension–tension fatigue tests were conducted at three frequencies: 0.1, 10 and 375 Hz to establish stress versus cycles to failure (S–N) relationships. There was an increase in cycles to failure at a given stress level as frequency increased from 0.1 to 375 Hz at elevated temperature. This trend was different at room temperature where cycles to failure decreased when frequency changed from 40 to 375 Hz but remained almost same below 40 Hz. There was a reduction in cycles to failure at frequencies less than 40 Hz but cycles to failure remained same at a higher frequency of 375 Hz when test environment changed from room temperature to 550 °C. Analysis of damage mechanisms showed that the oxidation of carbon fibers was the major difference between the room and elevated temperatures, which caused a reduction in cycles to failure with lower frequencies at elevated temperature in comparison to that at room temperature. However, oxidation of carbon fibers was almost absent or negligible at higher frequency at elevated temperature, which caused practically no reduction in cycles to failure at elevated temperature in comparison to their counterparts at room temperature.  相似文献   

14.
In the present study, titanium was diffusion bonded to a type 17-4 precipitation hardening stainless steel in vacuum at different temperatures and times. Bonded samples were characterized using light microscopy, scanning electron microscopy (SEM) and X-ray diffraction technique (XRD). The inter-diffusion of the chemical species across the diffusion interface was evaluated by electron probe microanalysis (EPMA). Up to 850 °C for 60 min, FeTi phase was formed at the diffusion interface; however, α-Fe + λ, χ, Fe2Ti and FeTi phases and their phase mixtures were formed above 850 °C for 60 min and at 900 °C for all bonding times. The maximum tensile strength of ∼342.4 MPa and shear strength of ∼260.3 MPa along with 12.8% elongation were obtained for the diffusion couple processed at 950 °C. The thicknesses of different reaction products at the bond interface play an important role in determining the mechanical properties of the joints. The residual stress of the bonded joints increases with the increases in bonding temperatures and times.  相似文献   

15.
Cyclic torsion fatigue tests with superimposed static torsion loads are performed with VDSiCr spring steel with shot-peened surface in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime. Fatigue properties are investigated at load ratios R = 0.1, R = 0.35 and R = 0.5 up to limiting lifetimes of 5 × 109 cycles with a newly developed ultrasonic torsion testing method. Increasing the load ratio reduces the shear stress amplitude that the material can withstand without failure. Fatigue cracks are initiated at the surface in the HCF regime. In the VHCF regime, cracks are preferentially initiated internally in the matrix, below the surface layer with compression residual stresses, and less frequently at the surface. Cyclic and mean shear stresses with 50% survival probability in the VHCF regime are presented in a Haigh diagram. Linear line approximation delivers a mean stress sensitivity of M = 0.33 for load ratios between R = −1 and R = 0.5.  相似文献   

16.
《Composites Part B》2007,38(2):152-158
The mechanical properties of newly developed aspen fiber–polypropylene composites (APC) were experimentally explored and numerically predicted at the temperatures and humidity that are typical for domestic housing applications. The mechanical properties of APCs with five different fiber-loadings were evaluated at the room temperature, 4 °C, and 40 °C. Environmental effects on the mechanical properties of APCS were experimentally quantified after conditioning the APCs with two different fiber-loadings in the following temperature and humidity for over 7000 h: (1) hot/dry at 40 °C and 30% relative humidity (RH), (2) hot/wet at 40 °C and 82% RH, (3) cold/dry at 4 °C and 30% RH, and (4) cold/wet at 4 °C and 82% RH. The tensile moduli, flexural moduli, and the flexural strength increased as the woodfiber content increased in the composites. However, the tensile strength decreased as the fiber content increased. The tensile strength was shown to slightly improve with an addition of a coupling agent between the aspen fibers and polypropylene. The simple empirical micromechanics Halpin–Tsai model for randomly distributed short fiber reinforced composites was employed to predict the homogenized elastic moduli of APC, by optimizing the interfacial model parameter. Scanning electron microscopy (SEM) micrographs confirmed that an addition of the adhesion promoter maleated anhydride polypropylene (MAPP) between the aspen fibers and polymeric matrix improved the interfacial bonding.  相似文献   

17.
The paper presents the fatigue test results of rectangular cross-section specimens made of 10HNAP (S355J2G1W) steel. The specimen height to width ratio was 1.5. The tests under bending with torsion were performed for the following ratios of bending to torsional moments MaB/MaT = 0.47, 0.94, 1.87 and the loading frequency 26.5 Hz. Nominal stresses were chosen for the equivalent stress according to the Huber-Mises hypothesis equal to 360 MPa. The tests were performed in the high cycle fatigue regime for the stress ratio R = −1 and phase shift between bending and torsion loading equal to ϕ = 0 and 90°. Crack initiation and propagation phases were observed on the specimen surface using the optical microscope (magnification 20×) with an integrated digital camera. The test results for the fatigue crack growth rate versus the stress intensity factor range for mode I and mode III have been described with the Paris equation.  相似文献   

18.
Crack growth behavior of aluminum alloy 7075-T6 was investigated under in-plane biaxial tension–tension fatigue with stress ratio of 0.5. Two biaxiality ratios, λ (=1 and 1.5) were used. Cruciform specimens with a center hole, having a notch at 45° to the specimen’s arms, were tested in a biaxial fatigue test machine. Crack initiated and propagated coplanar with the notch for λ = 1 in LT orientation, while it was non-coplanar for λ = 1.5 between LT and TL orientations. Uniaxial fatigue crack growth tests in LT and TL orientations were also conducted. Crack growth rate in region II was practically the same for biaxial fatigue with λ = 1 in LT orientation and for the uniaxial fatigue in LT or TL orientations, while it was faster for biaxial fatigue with λ = 1.5 at a given crack driving force. However, fatigue damage mechanisms were quite different in each case. In region I, crack driving force at a given crack growth rate was smallest for biaxial fatigue with λ = 1.5 and for uniaxial fatigue in TL orientation, followed by biaxial fatigue with λ = 1 and uniaxial fatigue in LT orientation in ascending order at a given crack growth rate.  相似文献   

19.
Thermal degradation behaviors of the poly(p-phenylene benzobisoxazole) (PBO) fiber and phenolic resin matrix were investigated. The unidirectional PBO fiber reinforced phenolic resin composite material laminates were fabricated and exposed in a muffle furnace of 300 °C, 550 °C, 700 °C, and 800 °C for 5 min, respectively, to study the effects of thermal treatment on mechanical properties of the composites. After undergone thermal treatments at 300 °C, 550 °C and 700 °C for 5 min, the flexural strength was reduced by 17%, 37% and 80%, respectively, the flexural modulus was decreased by 5%, 14% and 48%, respectively, and the interlaminar shear strength (ILSS) was lowered by 12%, 48% and 80%, respectively. Thermal treatment at 300 °C, the phenolic resin began to pyrolyze and shrink resulted in the irreversible damage of the composites. After 550 °C thermal treatment, the phenolic resin pyrolyzed mostly but the PBO fiber had no obvious pyrolyze, the interface had sever broken. After 700 °C thermal treatment, the phenolic resin formed amorphous carbonaceous and PBO fiber pyrolyzed mostly so the mechanical properties dropped dramatically. At being heated at 800 °C for 5 min, the fiber was nearly totally pyrolyzed and and kept fibrous carbonaceous although the specimen became too brittle to stand any load thereon.  相似文献   

20.
High strength low alloy (HSLA) and dual-phase DP980 (UTS  980 MPa) steels were joined using fiber laser welding in similar and dissimilar materials combinations. The welded joints were characterized with respect to microhardness and tensile properties at three different temperatures: −40 °C, 25 °C, and 180 °C. Tensile properties of the welded joints were compared to those of the base metal (BM) obtained under similar conditions. A good correlation was found between the welded joints and the BM in relation to the tensile properties obtained at the different temperatures. A general trend of increase in the yield strength (YS), the ultimate tensile strength (UTS) and energy absorption (EA) with decreasing temperature was observed; however, work hardening coefficient was not altered and insignificant scatter was observed in case of the elongation. However, in the DP980 steel, dynamic strain ageing was observed only in the BM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号