首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了制备出在碱性环境中具备高效能的廉价析氢电极催化剂,选择不同的沉积电位在氯化胆碱-尿素(ChCl-urea)中电沉积制备出五种Co-Fe-Gd/NF电极催化剂。通过扫描电镜(SEM)和光谱仪(EDX)对电极表面形貌、元素含量及分布情况进行表征,X射线光电子能谱(XPS)对电极表面化学性质进行表征。结合线性扫描伏安法(LSV)、电化学阻抗技术(EIS)和循环伏安法(CV)电化学测试结果,表明-1.24 V沉积电位下制备的Co-Fe-Gd/NF-3电极具备优异的析氢催化性能,在10 mA·cm-2时的过电位仅为71 mV,最小的塔菲尔斜率(45 mV·dec-1)与电荷转移电阻(0.28503Ω·cm-2)表明其具备更快的析氢反应动力学过程,电化学活性表面积(ECSA)最大为390.5,为析氢过程提供更多的反应活性位点。对电极进行循环伏安耐久性测试与计时电流法(I-t)测试,结果表明Co-Fe-Gd/NF-3电极催化剂在碱性环境中稳定性良好。  相似文献   

2.
用化学腐蚀方法制备出3D多孔自支撑型Mn50Fe12.5Co12.5Ni12.5Cr12.5高熵合金。电化学测试结果表明,将这种高熵合金放入1 mol/L KOH的碱性溶液中,电流密度为10 mA·cm-2时过电位为281 mV,Tafel斜率为63 mV/dec,表明其电催化性能优于商业RuO2的性能。在电流密度为50 mA·cm-2的条件下连续工作50 h,工作电压没有明显的升高,表明这种富锰高熵电催化电极材料具有优异的析氧稳定性。电化学阻抗谱表明,这种自支撑型结构的块体高熵合金催化剂具有出色的导电性,与负载型催化剂相比其电子转移能力显著提高。  相似文献   

3.
本文通过静电纺丝-煅烧-原位氢还原-置换工艺制备了嵌入铱的钴纳米纤维(Co-Ir-600).得益于独特的一维纳米纤维异质结构给予的快速电子传输和传质过程以及Ir和Co两组分之间的协同作用,Co-Ir催化剂在碱性电解质中达到10 mA cm-2电流密度仅需169 mV的极低过电位,表现出优异的析氧电催化活性.此外,该催化剂还具有良好的析氢反应性能.我们构建了一种将Co-Ir-600纳米纤维催化剂同时作为阳极和阴极的碱性电解槽,其只需要1.51 V的低电池电压即可达到10 mA cm-2的电流密度且耐用性好,性质明显优于参照的Pt/C||IrO2以及许多已报道的水电解槽.本研究为制备经济高效的金属基水裂解电催化剂提供了一种通用有效的方法.  相似文献   

4.
制备高稳定性、高活性双功能催化剂用于全解水制氢是氢能源大规模商业化应用的重要环节之一。本文以植酸(PA)、六水合氯化铁(FeCl3·6H2O)和六水合氯化镍(NiCl2·6H2O)为原料,采用两步室温浸渍法在泡沫镍(NF)上制备了片状无定形植酸-镍铁双金属复合材料(NiFe-PA)。采用线性扫描伏安法(LSV)考察了NiFe-PA修饰NF电极(NiFe-PA/NF)在碱性条件(1.0 mol/L KOH)的电解水催化性能。实验结果表明:由于NiFe双金属之间的协同效应,NiFe-PA/NF作为双功能催化剂显示出优越的析氧和析氢性能。NiFe-PA/NF电极在50 mA·cm-2电流密度下析氧反应的过电位仅需220 mV;在10 mA·cm-2电流密度下的析氢反应的过电位为135 mV。将NiFe-PA/NF组装成双电极系统用于全解水,达到10 mA·cm-2电流密度的电池电压仅需1.61 V,低于贵金属催化剂体系RuO2  相似文献   

5.
采用水热法将石墨烯生长到泡沫镍上,获得泡沫镍@石墨烯水凝胶基底材料(NF@GH),再以十六烷基三甲基溴化铵(CTAB)为导向剂,在120℃下水热反应后得到NF@GH@NiCoLDH。并研究了石墨烯水凝胶对NF@GH@NiCoLDH复合材料电化学性能的影响。1 mA cm-2电流密度下NF@GH@NiCoLDH的比容量可达3658 mF cm-2,15 mA cm-2时的比容量保持率为67.5%,高于NF@NiCoLDH(58%);10000次循环后的容量保持率为62%(15 mA cm-2),具有较好的循环稳定性和倍率性能。以NF@GH@NiCoLDH为正极材料组装的不对称超级电容器比容量为909 mF cm-2(1 mA cm-2),器件的最高能量密度为0.25 mWh cm-2(功率密度为0.7 mW cm-2)。  相似文献   

6.
本研究采用简单的一步化学沉积法制备非晶纳米Nd-Ni-B/NF稀土复合电极并研究其析氢(Hydrogen evolution reaction, HER)性能。通过各种测试方法对纳米电极材料进行物相分析和形貌表征,并探索其电催化析氢性能和稳定性。结果表明, 稀土Nd可提高电极的电催化析氢性能, 当硝酸钕浓度为3 g?L-1时, 恒温35 ℃下施镀1 h, 制备的Nd-Ni-B/NF电极析氢性能最佳。Nd-Ni-B/NF(Nickel foam)电极在1.0 mol?L-1KOH 溶液中, 20 mA?cm-2电流密度下的析氢过电位仅为180 mV, Tafel斜率为117 mV?dec-1, 析氢反应由Volmer-Heyrovsky步骤控制。此外, Nd-Ni-B/NF电极具有优越的电化学稳定性, 在持续电解12 h或2000次循环伏安测试后, 催化剂的活性没有明显衰减。  相似文献   

7.
孙群翔  梁砚琴  朱胜利  李朝阳  姜辉 《功能材料》2022,(11):11143-11149
开发非贵金属高效电催化剂是降低电解水制氢成本的关键。通过激光直写技术以及脱合金在泡沫镍基底上制备了一种自支撑的纳米多孔MoNi/Al3Ni2催化剂。该催化剂的纳米多孔结构增加了催化反应的活性位点,MoNi和Al3Ni2之间的协同效应使催化剂在碱性介质(1 mol/L KOH)中表现出优异的析氢性能。电化学测试结果表明,Al含量为80%时制备的MoNi/Al3Ni2催化剂在10 mA/cm2的电流密度下,过电位仅为31 mV,且表现出良好的电化学长期稳定性,在10 mA/cm2的电流密度下,稳定催化析氢100 h以上,为工业电解水析氢用电催化剂的大规模制备提供了理论指导。  相似文献   

8.
用CVD法合成微米螺旋碳纤维(carbon microcoils,CMCs),用硝酸和KOH等对其进行纯化和活化处理,用扫描电镜(SEM)、光学显微镜观察其形貌,用X-射线能谱仪分析反应后催化剂成分,并采用恒流充放电、循环伏安、交流阻抗等电化学方法分析CMCs超级电容器性能。结果表明,在50 mA·g-1电流密度条件下,初始CMCs产物的比电容为12.7 F·g-1,纯化处理后的比电容为41.4 F·g-1,活化处理后则达到111.1 F·g-1,为处理前的8.75倍。表明纯化特别是活化处理使其电容性能显著提高。  相似文献   

9.
MXene材料具有组分灵活可调、电容量较高等优势在超级电容器储能领域备受关注。采用电化学法制得聚3, 4-乙烯二氧噻吩/Nb2CTx MXene (PEDOT/MXene)复合电极材料。结果表明,在扫描速率为30 mV·s-1时,PEDOT/MXene的面积比电容可达250.21 mF·cm-2,当电流密度从0.1 mA·cm-2增加到5 mA·cm-2时,PEDOT/MXene的面积比电容保持率为83.5%,远优于PEDOT的64.1%,并且在100 mV·s-1的扫描速率下循环测试1 000次后初始电容保持率可达84%,表现出良好的倍率性能和稳定性。工作为基于MXene基材料构筑高性能电化学储能界面提供了一定的借鉴。  相似文献   

10.
采用燃料电池可实现无污染发电。在这种氢燃料电池中,有两个含有催化剂的铂基电极,该电极可将氢和氧转化为水或将水裂解为氢和氧。氢气在通过其中一个电极时,被分裂成氢质子和电子。电子在回路中流动产生电流,而质子则流向另外一个电极,并与氧结合形成水分子。铂基催化剂还用于将水裂解为氢和氧,并作为燃料储存于电池中,还用于其它能源技术中。但是,铂为贵金属,非常稀有,难以作为广泛使用的石化类燃料系统的替代技术。  相似文献   

11.
电化学水分解是将可再生能源产生的间歇性电能转化为高纯度氢气的一种极具前景的绿色能源技术.目前,高效制氢催化剂主要由贵金属及其化合物组成,而贵金属的高成本及稀缺性,限制了其在大规模工业化制氢中的应用.因此,探索低成本,高电化学活性、高稳定性的电解水制氢催化剂至关重要.合金化材料以短程或长程有序结构存在,具有增强的电化学性能.因此,本文采用两步法制备超小碳负载FeRu合金纳米电催化剂并将其应用于电催化析氢反应.Fe0.05Ru0.05/XC-72双功能电催化剂粒径为2.1 nm,在碱性淡水和海水电解质中表现出优异的活性和耐久性.10 mA cm-2时,在1 mol L-1 KOH、1 mol L-1 KOH+0.5 mol L-1 NaCl和1 mol L-1 KOH+海水中分别表现出13、15和18 mV的过电位.在1 mol L-1 KOH介质和-0.07 V(相比于可逆氢电极)条件下,Fe0.05  相似文献   

12.
用闭合场非平衡磁控溅射离子镀在304不锈钢表面沉积CrN和CrNiN涂层。采用X射线衍射和场发射扫描电镜表征涂层的结构和形貌。采用电化学测试、界面接触电阻测试以及疏水性测试等方法,研究两种不同涂层在模拟质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)环境下的电化学腐蚀性能、界面接触电阻以及疏水性能。结果表明:CrN涂层主要包含CrN和Cr2N相,CrNiN涂层中CrN和Cr2N相较少,Ni在CrNiN涂层中以单质形式存在;动态极化测试表明涂层的耐蚀性能较好,其中CrNiN涂层的耐蚀性能较CrN涂层差,恒电位极化测试表明CrN和CrNiN涂层的电流密度相当;CrN和CrNiN涂层都显著降低了304不锈钢的界面接触电阻,其中CrN涂层的接触电阻最小;CrNiN涂层疏水性能优于CrN涂层,更有利于质子交换膜燃料电池中的水管理。  相似文献   

13.
利用MEMS技术制备了一种自呼吸式微质子交换膜燃料电池(PEMFC),阳极采用点蛇混合结构,阴极采用双层镂空微流场结构,阴极靠近膜电极侧微孔尺寸从5~50m不等。鉴于自呼吸式电池的性能受环境的影响很大,本文着重研究了环境湿度和温度对电池性能的影响。结果表明阴极微孔尺寸为11m和15m的电池孔径适度,在环境20℃、30%-70%RH时两电池的极限电流密度(Jmax)和峰值功率密度(Pmax)均表现出较高值,性能良好;阴极微孔尺寸为11m的电池在空气维持50%RH下,温度由10℃升到40℃时Pmax逐渐增大,增幅达14.9%;若不维持空气湿度而改变温度,则温度由10℃升高到40℃时Pmax先增大后减小,20℃时达最大。  相似文献   

14.
利用不同的分步还原法制备Pd基阳极催化剂,以二氧化铈为修饰剂,硼氢化钠为还原剂,成功制备出Pdcore-Nishell/C、Nicore-Pdshell/C两种不同结构碱性燃料电池阳极催化剂。通过物理表征和电化学性能测试,发现Nicore-Pdshell/C催化剂中Pd负载量较高,分散均匀,颗粒较小,在碱性环境下表现出更好的乙醇催化氧化活性和稳定性,在扫描速度为100mV/s的条件下,最高电流密度达到160mA·cm-2,在-0.5V条件下,电流密度的稳定性均优于Pdcore-Nishell/C催化剂。  相似文献   

15.
采用原位法制备了一种适用于低温燃料电池的新型聚(2,5-苯并咪唑)/磺化海泡石(ABPBI/S-Sep)复合质子交换膜。对海泡石酸活化和磺化改性前后的化学结构、亲水性和分散性以及复合膜的形貌、吸水率、磷酸掺杂水平与质子传导率等性能进行了表征和测试。结果显示,所制备的S-Sep粒子在ABPBI聚合物基体中分散均匀,并能促进聚合物分子链的规整排布;与纯ABPBI膜相比,S-Sep粒子的添加显著增强了复合膜对水和磷酸的吸收和保留能力,且在相同或相近磷酸掺杂水平下,ABPBI/S-Sep复合膜的质子传导率显著提高。在40~90℃温度范围内,饱和湿度98%RH时复合膜的质子传导率与Nafion 212相当;在低湿度60%RH时,高磷酸掺杂水平的ABPBI/S-Sep复合膜质子传导率略低于98%RH的结果,但显著优于Nafion 212的质子传导性能。不同温湿度环境下的质子传导率结果表明S-Sep改性ABPBI复合膜具备低温环境使用的特点,可替代Nafion类全氟磺酸膜应用于低温质子交换膜燃料电池。  相似文献   

16.
采用原位法制备了一种适用于低温燃料电池的新型聚(2,5-苯并咪唑)/磺化海泡石(ABPBI/S-Sep)复合质子交换膜。对海泡石酸活化和磺化改性前后的化学结构、亲水性和分散性以及复合膜的形貌、吸水率、磷酸掺杂水平与质子传导率等性能进行了表征和测试。结果显示,所制备的S-Sep粒子在ABPBI聚合物基体中分散均匀,并能促进聚合物分子链的规整排布;与纯ABPBI膜相比,S-Sep粒子的添加显著增强了复合膜对水和磷酸的吸收和保留能力,且在相同或相近磷酸掺杂水平下,ABPBI/S-Sep复合膜的质子传导率显著提高。在40~90℃温度范围内,饱和湿度98%RH时复合膜的质子传导率与Nafion 212相当;在低湿度60%RH时,高磷酸掺杂水平的ABPBI/S-Sep复合膜质子传导率略低于98%RH的结果,但显著优于Nafion 212的质子传导性能。不同温湿度环境下的质子传导率结果表明S-Sep改性ABPBI复合膜具备低温环境使用的特点,可替代Nafion类全氟磺酸膜应用于低温质子交换膜燃料电池。  相似文献   

17.
丁仕久  刘亮  刘培涛  冯爱玲 《功能材料》2022,(11):11136-11142
设计和合成具有高活性、耐久性的非贵金属电解水催化剂对能量转化和储存具有重要意义。在研究中,通过硝酸铁、硫代乙酰胺与二水钼酸钠在无水乙醇中的水热反应制备了铁掺杂二硫化钼(Fe-MoS2)的纳米材料。Fe-MoS2具有较高的析氧反应(OER)活性,在1 mol/L KOH电解质中,当电流密度为10 mA·cm-2时过电位为250 mV,塔菲尔斜率为219 mV·dec-1,而且Fe-MoS2在这些条件下可稳定超过10 h以上。同时其具有良好的析氢反应(HER)活性,在0.5 mol/L H2SO4电解质中,当电流密度为10 mA cm-2时过电位为220 mV。此外,在1 mol/L KOH电解液中,Fe-MoS2/C(阳极)//Fe-MoS2/C(阴极)两电极体系具有良好的电解水催化活性,在10 mA cm-2的电流密度下低电位为1.77 V。为开发...  相似文献   

18.
赵文文  张华  李梅 《无机材料学报》2013,28(11):1217-1222
利用循环伏安法探究Pt与Fe共沉积的还原电位, 并在此电位下在多孔碳布表面恒压电沉积制备Pt-Fe合金, 研究其作为质子交换膜燃料电池 (PEMFC)阴极催化剂的电催化活性。通过X射线衍射 (XRD)、扫描电子显微镜(SEM)及场发射扫描电子显微镜 (FESEM)、能量色散谱 (EDS)、循环伏安 (CV)、单电池极化、电化学交流阻抗谱 (EIS)等测试技术对所得催化剂进行物理及电化学性能表征。实验表明, 在0.075 V电位下可还原得到Pt-Fe合金, 其颗粒在碳布表面呈空心球状且分散均匀; 共沉积时间对Pt-Fe合金催化剂成分组成有显著的影响, 随着时间的增加, 合金中Pt与Fe原子比增加, Fe相对含量下降。Fe可与Pt形成稳定的合金催化剂, 显著提高铂对氧还原的催化活性。电沉积30 min制得的合金催化剂具有最佳的催化活性。  相似文献   

19.
KBH_4为一种强还原剂与水发生反应,产生氢气和水溶性硼酸钾。该反应即使不添加任何催化剂仍可进行,但由于反应过程中pH值的不断升高而停止,只有加入适量的催化剂,才能使反应延续,因此,为达到足够快的析氢速度,寻求和制备合适的催化剂成为人们关注的问题。以蜂窝陶瓷(2MgO_2·Al_2O_3·SiO_2)为载体,利用钛酸丁酯水解法在载体表面涂敷TiO_2后,用浸渍法负载铁盐,经500℃焙烧及硼氢化钾(KBH_4)浸渍后,合成了Fe-B/陶瓷催化剂。该催化剂常温下具有优良的催化析氢性能。XPS研究结果表明,元素B的引入有利于提高催化剂催化析氢性能,原因在于催化剂经KBH_4浸渍后,催化剂表面氧化态铁被还原为元素态铁,同时,由于元素B的引入起到了防止催化剂表面元素态铁的氧化。利用该催化剂可实现为质子交换膜燃料电池(PEMFC)直接供氢。  相似文献   

20.
气体扩散层(GDL)是质子交换膜燃料电池(PEMFCs)的关键部件之一,成本占燃料电池膜电极的40%~50%。开发低成本、高性能的GDL生产工艺,可以降低燃料电池成本,推动燃料电池商业化进程。本研究以纤维素棉布为原料,通过铁基化合物的催化石墨化作用,在较低温度(1500℃)下生成了一种高导电、高孔隙率的柔性生物质碳布。碳布由相互连接的微米级碳纤维组成,形成了丰富的孔道,其孔隙率为76.93%。经过铁基化合物催化,碳纤维的表面原位生成了大量碳纳米管团簇,增加了碳布的导电性,使其平面电阻率降低至34mΩ·cm,垂直电阻率在2 MPa压力下降低至2.8 mΩ·cm,性能达到商业碳布的标准。生物质碳布作为气体扩散层的燃料电池在0.7 A·cm-2电流密度处功率密度达到0.4W·cm-2,超过了相同催化剂(Pt)负载量的商业碳布(0.34W·cm-2)的电池功率密度。本研究制备的生物质碳布制备简单、价格低廉、性能优秀,为开发低成本、高性能气体扩散层提供了新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号