首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Fe_(3)O_(4)作为锂离子电池负极材料,在充放电时体积变化较大,导致其容量衰减严重。目前,碳包覆是解决这个问题的主要方式之一。本工作以氧化石墨烯(GO)和Fe^(2+)为原料,用一步水热法合成了三维石墨烯片包覆Fe_(3)O_(4)纳米颗粒3DG@Fe_(3)O_(4)复合材料。使用傅里叶红外光谱(FT-IR)仪、热重分析(TGA)仪、X射线衍射(XRD)仪、拉曼光谱(Raman)仪、扫描电子显微镜(SEM)对复合物进行表征,研究结果表明,复合材料呈现石墨烯(G)片包覆Fe_(3)O_(4)纳米颗粒的三明治结构。同时采用了恒流充放电(GCPL)、循环伏安(CV)以及交流阻抗(EIS)等电化学测试方法,着重研究了Fe_(3)O_(4)含量对其电化学性能的影响,Fe_(3)O_(4)质量分数为83.2%的3DG@Fe_(3)O_(4)-2电极具有最高的比容量和循环性能,在0.1 A/g的电流密度下的首次放电比容量为1412.33 mAh/g,循环100次后的放电比容量为577 mAh/g,是纯Fe_(3)O_(4)电极材料经历100次循环后的6.5倍。一步水热合成方法具有操作简单、合成条件温和及无需额外添加还原剂等优点;制备的复合电极相比纯Fe_(3)O_(4)具有电极容量高、循环稳定性能好的优势,有助于推动Fe_(3)O_(4)基负极材料在电化学领域中的应用。  相似文献   

2.
钠离子电池因其成本低廉、环境友好且与锂离子电池工作原理相似,在大规模储能领域极具应用潜力。作为决定电池能量密度的关键组成部分,O3型钠基层状过渡金属氧化物因高容量、合成简单等优势在众多正极材料中脱颖而出。然而,Na^(+)在O3结构中八面体位点间的迁移需克服较大的能垒,最终导致复杂反应相变的发生和容量快速衰减。因此,探究O3型正极材料电化学反应过程中Na^(+)脱嵌行为与结构演变的构效关系对开发高性能正极材料至关重要。本工作以O_(3)-NaNi_(0.4)Fe_(0.2)Mn_(0.4)O_(2)(O3-NFM)正极为研究对象,对其电化学性能、Na^(+)传输动力学性质及相变机制展开了系统研究。电化学测试结果表明,O3-NFM在充电至高压(4.3 V)时可脱出0.84 mol Na^(+),发挥约201.9 mAh/g的比容量,但可逆性欠佳。当截止电压为4.0 V时,该正极材料循环性能优异,原位XRD结果进一步证明了电化学反应过程中O3-P3/O3-P3-P3/O3-O3的可逆结构转变。循环伏安(CV)曲线和恒电流间歇滴定技术(GITT)结果表明其具有快速的钠离子扩散速率,从而表现出较好的倍率性能。本研究为探索以O3-NFM为基础的正极材料结构设计及性能调控提供了理论基础。  相似文献   

3.
O3型层状氧化物正极材料NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)具有高比容量、低成本和环境友好性等优点,被认为是最有前途的钠离子电池正极材料之一,但在充放电过程中会发生一系列复杂的相变,导致电化学性能较差。本研究报道了一种协同改性方法,以同时提高NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料的循环稳定性和倍率性能。通过将硼酸粉末和正极材料固相球磨混匀后低温煅烧,在NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料表面包覆纳米非金属氧化物B_(2)O_(3)。借助X射线衍射仪(XRD)、扫描电子显微技术(SEM)、透射电子显微镜(TEM)和电化学技术等测试手段,对比分析不同包覆量和原材料的形貌和电化学性能,筛选得到最优包覆量为2%(质量分数,余同)。该方法实现了B_(2)O_(3)的均匀包覆,并且没有改变NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料的晶体结构。通过电化学性能测试表明2%B_(2)O_(3)包覆材料在1 C倍率下循环200圈容量保持率从78%提升至87%。同时,2%B_(2)O_(3)包覆材料的高倍率性能也得到了改善,10 C高倍率下放电比容量从75 mAh/g提升至99 mAh/g。结果表明,这是一种有效且可靠的表面改性策略,可以增强钠离子电池层状氧化物正极材料的电化学性能。  相似文献   

4.
锂离子电池具有能量密度高、自放电率低、使用温度范围广及循环寿命长等优点,在便携式电子设备、电动汽车和储能等领域得到广泛应用。TiNb_(2)O_(7)具有较高理论比容量(388 mAh/g),在充放电过程中体积形变较小,且在快速充电时可以避免锂枝晶的生成,使电池具有更好的安全性和更短的充电时间,是很有潜力的锂离子电池负极材料之一。但是,TiNb_(2)O_(7)的电子电导率和离子电导率较低,阻碍了其推广应用。本文作者通过对近期相关研究的探讨,结合国内外在TiNb_(2)O_(7)负极材料制备方面的最新研究进展,综述了TiNb_(2)O_(7)的结构、制备方法及改性策略,对其晶体结构及嵌锂机制进行讨论;同时介绍了高温固相法、溶胶凝胶法、静电纺丝法、溶剂热法及模板法等几种TiNb_(2)O_(7)的制备方法,分别介绍了纳米化、掺杂、引入氧空位及添加导电涂层等四个改性方法及其对TiNb_(2)O_(7)电化学性能的改善效果。综述分析表明,纳米化可以缩短锂离子的扩散路径,掺杂以及氧空位的引入可以改变TiNb_(2)O_(7)结构,复合电极可以改善其导电性,不同的改性方法可以有效地提高电极材料的倍率及循环性能,有望使其在高功率储能器件中得到良好应用。  相似文献   

5.
水系锌离子电池的能量密度高、稳定性好、安全系数高。NiCo_(2)O_(4)材料作为双过渡金属氧化物,其导电性能和电化学活性都很出色,本工作首次采用NiCo_(2)O_(4)材料作为水系锌离子电池的正极。采取了溶胶-凝胶法加煅烧热方法制备出立体尖晶石状的NiCo_(2)O_(4)材料,借助扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱分析技术(EDS)和电化学技术等表征测试手段,分析这种新型水系锌离子电池正极材料的形貌和电化学性能。结果表明,立体尖晶石状的NiCo_(2)O_(4)材料有着优良的纯度和结晶性,颗粒分散均匀,没有团聚,无杂质且具有良好稳定的充放电性能。电极在100 mA/g电流密度下,首次放电比容量为92 mA·h/g,100圈充放电测试后放电比容量为60 mA·h/g,200圈后,放电比容量保持在44 mA·h/g。但在循环倍率测试中发现,当电流密度较大时,NiCo_(2)O_(4)电极产生了27 mA·h/g的衰减,在一定程度上有着不可逆的冲击破坏。本研究有助于推动水性锌离子电池电极的应用,为高性能水性锌离子电池电极材料的研发提供实验依据。  相似文献   

6.
Na_(3)V_(2)O_(2)(PO_(4))_(2)F(NVOPF)具有较稳定的聚阴离子结构、较高的工作电压和理论比能量,是一种具有良好应用前景的钠离子电池正极材料。但该材料在合成过程中易发生不规则团聚,且本征电导率低,导致材料的实际比容量较小,倍率性能和循环性能有待提高。通过离子掺杂以及合成具有微纳结构的材料可以有效提高这类材料的结构稳定性和电导率。本工作首次报道了多元醇辅助水热法合成具有空心微球结构的Nb5+掺杂NVOPF[NVNOPF,Na_(3)V_(2-x)NbxO_(2)(PO_(4))2F(0≤x≤0.15)]材料。所制备的NVOPF和NVNOPF是尺寸为0.7~1.0μm的具有中空结构的微球。可以发现微球由尺寸小于100 nm的纳米颗粒组成。纳米颗粒缩短钠离子的扩散距离,并且缓冲了由于钠离子的嵌入/脱出所导致的体积变化,提高了材料的循环稳定性。同时,掺杂Nb5+增大了NVOPF的晶格参数,增大了Na+扩散通道,将Na+在NVOPF中的固相扩散系数由Na_(3)V_(2)O_(2)(PO_(4))_(2)F的6.46×10^(-16)cm^(2)/s提高至Na3V1.90Nb0.10O2(PO_(4))_(2)F的3.52×10^(-15)cm^(2)/s。Na_(3)V_(1.90)Nb_(0.10)O_(2)(PO_(4))_(2)F材料以0.1 C倍率放电,首次放电比容量达126.4 mAh/g;以10 C倍率放电,初始比容量为98.1 mAh/g,500周循环后的容量保持率为95.2%,明显优于未掺杂材料的66.8%。研究结果显示掺杂Nb5+的空心球形微纳结构有效提高了NVOPF材料的电化学性能和循环稳定性。  相似文献   

7.
超级电容器因其功率密度高、充放电迅速、循环寿命长等优点被认为是一种极具发展前景的新型储能装置,其中电极材料的研究是超级电容器发展的关键,材料的微观结构很大程度上决定了材料的电化学性能。本工作采用水热法及热处理制备了NiMoO_(4)/NiCo_(2)S_(4)复合材料,并应用于超级电容器电极。对纳米复合材料的组成及微观结构通过X-射线衍射(XRD)、能量色散X-射线能谱仪(EDS)、X-射线光电子射线能谱仪(XPS)、扫描电子显微镜(SEM)和氮气吸脱附法进行表征,结果表明复合材料具有多孔三维网状结构,其独特的结构减少了NiMoO_(4)的团聚,增加了材料比表面积,展现出更加优异的电化学性能:在1 A/g的电流密度下,比电容为847.2 F/g(高于NiMoO_(4)电极的576.1 F/g和NiCo_(2)S_(4)电极的734.3 F/g),即使在10 A/g的电流密度下仍保留466.7 F/g的比电容。当NiMoO_(4)/NiCo_(2)S_(4)复合材料作为正极、活性炭作为负极构成非对称超级电容器时,在1 A/g的电流密度下循环2000圈后,仍保留76%的比电容,具有良好的循环稳定性。本研究对NiMoO_(4)作为超级电容器电极材料的发展提供参考,为高比电容、高循环稳定性电极材料的研发提供实验依据。  相似文献   

8.
静电纺丝法由于具有工艺简单、功能多样等优点,是一种重要的制备一维锂钠离子电池纳米结构电极材料的方法。目前,已有大量利用静电纺丝技术制备高性能电极材料的研究报道,但具有系统性和针对性的综述论文尚十分有限。碳材料是最早被研究且已实现商业化的锂离子电池负极材料,硅材料则是理论容量最高的负极材料,因此,两者一直是学术界和工业界关注的重点;但碳材料理论容量低和硅材料体积变化大的问题严重阻碍了各自更广泛的实际应用。静电纺丝技术被证明是一种可以解决上述问题的十分有效的方法。因此,本文系统地综述了静电纺丝法制备的硅基和碳基纳米纤维在锂钠离子电池负极材料上的应用和发展,重点从静电纺丝原理、硅碳材料的设计及合成、结构的调控与优化、复合材料的制备到电化学性能的提高等方面作了详细介绍和讨论,同时也指出静电纺丝法在大规模生产中的不足及未来可能的发展方向。希望此综述可以为先进储能材料(尤其是硅基和碳基纳米电极材料)的设计和制备提供一些有益的指导和帮助。  相似文献   

9.
本工作以CrO_(3)前体为原料,采用高温固相法制备高性能的Cr_(8)O_(21)材料,探究了热解温度对Cr_(8)O_(21)性能的影响,并详细分析Cr_(8)O_(21)的首次放电机理。借助X射线衍射技术(XRD)、扫描电子显微技术(SEM)、X射线光电子能谱分析技术(XPS)和电化学技术等表征测试手段,对比分析了不同热解温度下制得的样品结晶度、形貌和电化学性能,并阐明了放电机理。结果表明,热解温度270℃下制备的Cr_(8)O_(21)样品结晶度最高、放电性能优异。在0.05 mA/cm^(2)下放电比容量达到419 mAh/g,平均电压2.99 V;在1.0 mA/cm^(2)下放电比容量达到315 mAh/g,平均电压2.82 V;容量保持率75.11%,电化学性能高于其他温度下制得的Cr_(8)O_(21)样品。热解温度低于270℃,CrO_(3)前体反应不充分;热解温度高于270℃,会生成杂相。XPS结果显示,Cr_(8)O_(21)中Cr元素只含+3价和+6价,不存在其他价态。Cr_(8)O_(21)首次放电机理为:从3.5 V放电至3.0 V,为锂离子嵌入Cr_(8)O_(21)内部的过程;从3.0 V放电至结束,为锂离子与Cr_(8)O_(21)反应生成LiCrO_(2)和高度不可逆的Li_(2)O的过程。本研究有助于推动高容量的Cr_(8)O_(21)材料在锂一次电池领域的应用,为高比能一次电池技术的研发提供实验依据。  相似文献   

10.
11.
通过固态电解质构建的全固态锂离子电池具有极高的安全性及可靠性,是目前锂离子电池领域的研究热点。其中复合固态电解质既改善了聚合物电解质力学性能差、离子电导率低等缺点又解决了无机固态电解质的界面接触等问题。本文通过溶胶-凝胶法制备了掺杂了Al、Mo的Li_(7)La_(3)Zr_(2)O_(12)粉体,并将其与PEO(聚环氧乙烷)复合,利用溶液浇筑法制备了不同比例的复合固态电解质,考察其在全固态电池中的性能。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、差示扫描量热仪(DSC)等测试手段对Li_(6.65)Al_(0.05)La_(3)Zr_(1.9)Mo_(0.1)O_(12)粉体以及复合固态电解质进行了材料表征。同时利用电化学工作站、电池充放电测试系统测试了复合固态电解质在全固态电池中的应用性能。与纯PEO电解质相比,复合15%Li_(6.65)Al_(0.05)La_(3)Zr_(1.9)Mo_(0.1)O_(12)的电解质电化学窗口为4.79V,可以在0.2mA/cm^(2)下稳定循环500h,在0.1C倍率下,循环100圈容量保持率为89.9%。  相似文献   

12.
过渡金属硒化物因为具有更窄的带隙和线宽、更高的导电性、更大的层间距、更低的成本以及更高的理论容量等优势,在电极材料领域受到了广泛关注。本研究为着重解决FeSe_(2)电极材料可逆容量低和循环稳定性差等问题,设计了在FeSe_(2)阳极中掺杂膨胀石墨,形成由互相穿插、堆叠的膨胀石墨片组成的三维导电网络结构,以膨胀石墨为碳源,采用简单有效的溶剂热法制备出FeSe_(2)-C负极材料。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2吸附法等表征手段,对样品的晶体结构组成、微观结构形貌进行了解析。同时,采用了恒流充放电(GCPL)、循环伏安(CV)以及交流阻抗(EIS)等电化学测试方法,研究了膨胀石墨的掺杂对FeSe_(2)电化学性能的影响。结果表明,FeSe_(2)-C电极呈现出层级结构且储锂能力良好,具有优异的电化学性能和循环稳定性。在0.1 A/g的电流密度下首次放电比容量高达720.5 mAh/g,充电比容量512.3 mAh/g、首次库仑效率71.1%。在5 A/g的电流密度下经过1000次循环后容量仍有339.1 mAh/g,是纯FeSe_(2)电极材料经历相同次数循环后的8.5倍。利用膨胀石墨构筑三维导电网络的技术方法,可以有效改善FeSe_(2)的电化学性能。  相似文献   

13.
具有三维网络结构的NASICON型Na3V2(PO4)3材料,由于其稳定的电压平台,较高的理论容量(117 mA·h/g),被视为一种具有良好应用前景的钠离子电池负极材料。采用溶剂热和进一步热处理的方式,获得石墨烯包封Na3V2(PO4)3的复合材料[Na3V2(PO4)3/G],有效提高了Na3V2(PO4)3的电子导电性。在0.01~3.00 V电压区间,0.2 C倍率进行测试时,Na3V2(PO4)3/G复合材料在230圈循环后,其放电比容量保持在100.9 mA·h/g,容量保持率高达68.4%,即使在5 C倍率,其放电比容量仍可达65.2 mA...  相似文献   

14.
利用g-C_(3)N_(4)表面丰富的官能团进行锂化,得到锂化氮化碳(L-g-C_(3)N_(4))材料,并以双三氟甲基磺酰亚胺锂(LiTFSI)为锂盐,聚环氧乙烯(PEO)为聚合物基体,采用流延-热压法制备Li^(+)-g-C_(3)N_(4)复合固态电解质。借助透射电子显微镜(TEM)、X射线衍射仪(XRD)、红外光谱仪(FT-IR)、差示扫描量热法(DSC)、线性循环伏安(LSV)、直流极化曲线、交流阻抗谱以及充放电测试等手段对复合固态电解质进行表征和测试。对比分析相同质量分数g-C_(3)N_(4)复合固态电解质与L-g-C_(3)N_(4)复合固态电解质的电化学性能,同时对不同L-g-C_(3)N_(4)含量的复合固态电解质的电化学性能进行研究。结果表明,添加质量分数为10%L-g-C_(3)N_(4)的复合固态电解质在60℃时的离子电导率为3.95×10^(-4) S/cm,锂离子迁移数为0.639,电化学窗口为4.5 V以上。以复合固态电解质组装Li/LiFePO_(4)全固态电池,在60℃以0.5 C充放电,电池的首次放电比容量为163.76 mAh/g,循环80次后容量仍有160.10 mAh/g,容量保持率为97.8%。  相似文献   

15.
锂离子电池作为目前常见的储能器件,具有能量密度高、功率密度大、价格低廉、绿色环保等特点,已经得到广泛应用。目前发展非石墨基负极材料以提升电池性能的需求日益迫切,钼酸铜由于理论比容量高、还原电位低,是一种极具潜力的负极材料。本研究工作以天然棉花纤维为结构支架和碳源构建了一种具有微-纳结构的C/TiO_(2)/CuMoO_(4)复合纤维材料,解决了钼酸铜作为电极材料时导电性差和易粉碎的问题,表现出优异的电化学性能。首先对棉花纤维进行酸碱预处理提高其比表面积;然后通过溶胶-凝胶法在纤维表面沉积超薄二氧化钛层;再利用层层自组装(LbL)技术沉积钼酸铜层;最后在氩气氛围中于500℃煅烧6h得到微-纳结构的C/TiO_(2)/CuMoO_(4)复合纤维材料。当用作电极材料时,在100mA/g的电流密度下,钼酸铜质量分数为22.8%的复合材料首圈放/充电比容量分别为1212mAh/g和675mAh/g,库仑效率为55.7%,经过200圈循环后,其比容量为403mAh/g,保持率为59.7%,具有良好的循环性能和倍率性能。这种微-纳结构提高了复合材料的导电性和稳定性,从而增强了其电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号