首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
过渡金属氧化物是一种超级电容器电极材料。采用共沉淀法制备了立方体Co类普鲁士蓝(Co-PBA)纳米材料,先将Co-PBA在氮气中进行退火,PBA衍生为掺氮的碳纳米盒,得到产物Co@NC,再在空气中250℃下退火,得到Co3O4@NC纳米复合材料。Co-PBA材料的微观结构为盒状并均匀分布,平均尺寸约为500 nm。在三电极体系下测试其电化学性能,循环伏安(CV)测试结果显示在不同电流密度下曲线具有相似的形状,拥有良好的对称性,说明该材料制备的电极在充放电时的可逆性较好。Co3O4@NC复合材料在电流密度1 A/g时的比电容为1 000.02 F/g,在电流密度5 A/g下充放电2 500次后电容保持率为97.29%,保持了良好的循环稳定性。实验结果表明,Co3O4@NC复合材料是一种很有前途的超级电容器电极材料。  相似文献   

2.
通过添加碳纳米管共沉淀的方法制备了Fe3O4-CNTs复合材料。研究发现,CNTs不仅可以降低复合材料作为锂离子电池负极的阻抗,而且对活性物质Fe3O4起到很好的支撑作用,极大地提高了Fe3O4在充放电过程中的电化学稳定性。在0.5 A/g的电流密度下Fe3O4-CNTs循环200圈后的放电比容量保持在1406 mAh/g。在10 A/g的大电流密度下循环,第100圈时Fe3O4-CNTs的放电比容量稳定在230 mAh/g左右。循环至第9999圈时,Fe3O4-CNTs的比容量下降至179 mAh/g,只损失了50 mAh/g,充放电效率高达99.98%。Fe3O4-CNTs复合材料在大电流密度超长循环的背景下表现出优异的性能,对负极材料的开发有重要的意义。  相似文献   

3.
二硫化铼(ReS2)作为过渡金属二硫化物的一员,由于极弱的层间范德华相互作用、较弱的层间耦合能量和较大的层间距,在钠离子电池领域有着良好的应用前景。但是ReS2自身较低的本征电导率和充放电过程中较大的体积膨胀严重限制了其电化学储钠能力。在空心介孔碳球(HMCS)上原位生长ReS2纳米片(HMCS@ReS2),将HMCS@ReS2复合材料作为高性能钠离子电池负极。碳基材料的复合弥补了ReS2电导率不足的缺陷,促进了电子的快速转移;空心介孔碳球为ReS2的体积变化提供了足够的缓冲空间,维持了电极材料的结构稳定性。HMCS@ReS2作为钠离子电池负极材料时有着优异的倍率性能和循环性能。结果表明,HMCS@ReS2电极在0.2,0.5,1.0,2.0,5.0 A·g-1的电流密度下分别表现出388.5,343.4,305.3,262.4,180.1 mAh·g-1  相似文献   

4.
为开发高效储存性能的锂离子电池(LIB),利用简单的溶剂热反应合成一维Co-硝基三乙酸(NTC)前驱体,与三维石墨烯(3DG)组装并高温退火后,制备了多维度、多孔的3DG/CoSe2@纳米线(NW)负极材料。通过一系列的表征证明在纳米结构中,CoSe2纳米粒子嵌入一维多孔碳NW中,该一维多孔碳NW被封装在3DG中。3DG/CoSe2@NW用作LIB负极材料时,由于其独特的纳米结构,在0.1 A·g-1电流密度下100次循环后比容量为725.6 mA·h·g-1,在2 A·g-1的大电流密度下进行500次的循环后,容量保持率为92.5%。电化学测试结果表明,以3DG/CoSe2@NW为电极的LIB具有高比容量和优异的循环稳定性。  相似文献   

5.
兼具高理论比容量与低工作电压的硅在高能量密度锂离子电池领域具有重大应用潜力,然而其在循环过程中存在巨大的体积变化,导致其循环性能急需提升。基于此,通过小分子单宁酸的引入,在海藻酸、聚乙烯吡咯烷酮双网络高分子体系中构建了氢键交联的动态网络,实现了一种兼具良好韧性与热稳定性的自修复海藻酸基双网络粘结剂,可以有效地缓冲硅颗粒在多次充放电循环过程中的巨大机械应力,进而支撑硅负极在0.2C电流密度下循环200圈后,仍然维持1675.9 mAh·g-1的放电比容量,甚至在1C电流密度下的放电比容量仍保持在1173.1 mAh·g-1,说明单宁酸增强海藻酸基双网络粘结剂可以提升硅颗粒的电化学性能,有望推动硅电极的产业化进程。  相似文献   

6.
二硫化钼(MoS2)作为过渡金属硫化物的典型代表之一,具有二维层状结构(层间距为0.62 nm)和较高的理论比容量(670 mAh·g-1),是一种很有前途的储钠材料。但因其较差的电子电导率和较弱的层间引力,极大地限制了钠离子电池(SIBs)的储钠性能。通过溶剂热法成功制备碳改性二硫化钼纳米片(MoS2/C-H)。碳材料和MoS2的成功复合一方面有效提高材料表面和内部的电子电导率;另一方面,使得MoS2的层间距从初始的0.62 nm宽化到1.00 nm,不仅有利于钠离子的快速脱嵌,还能有效缓解充放电过程中的体积膨胀问题,从而显著提高MoS2作为SIBs负极材料的循环稳定性和倍率性能。电化学性能测试结果显示在0.5 A·g-1电流密度下,MoS2/C-H电极循环200圈后仍可维持320 mAh·g-1的可逆比容量。此外,MoS2/C-H电极还具有良好的倍率性能,在0.5,...  相似文献   

7.
采用水热法成功合成了CaMoO4/氧化石墨烯(GO)纳米复合材料。通过材料的表面形貌、晶体结构和电化学性能研究合成的纳米复合材料。结果表明,CaMoO4/GO电极在电流密度0.5 A/g时比电容高达571.82 F/g,并且在1 A/g的电流密度下,经过1000次循环后的比电容保持率仍为84%。为了测试电极材料的实际应用效果,全固态超级电容器(ASC)分别使用CaMoO4/GO和活性炭(AC)作为正极和负极进行组装。组装的ASC在功率密度1710.3 W/kg下显示出25.18 W·h·kg-1的能量密度,并且能通过串联4个ASC为红色发光二极管供电。上述结果表明CaMoO4/GO电极材料在高性能储能设备的应用中具有非常大的潜力。  相似文献   

8.
锂硫电池在电动汽车、无人机等领域受到极大的关注,因其环境友好、材料成本低、理论容量高等特点而被广泛研究,但因硫的导电性能不佳、多硫化物的穿梭效应以及充放电过程中硫的体积变化等阻碍了锂硫电池的商业化。为改善硫不良的导电性及多硫化物的穿梭效应,基于碳材料优异的导电性与氧化物较强的吸附性,采用水合肼在CNT表面还原氯化镍,通过热处理后得到NiO/CNT复合物作为硫的载体,充当电池的正极。物理及电化学表征的结果表明,多孔结构的NiO/CNT比表面积达到48.49 m2·g-1,在电流密度为1C下,NiO/CNT的首圈比容量达到825 mAh·g-1,循环100圈后,比容量保持在617 mAh·g-1且库伦效率在99.3%以上,说明两种材料的复合提高了电池库伦效率和循环性能。  相似文献   

9.
硫化铜(CuS)具有优异的导电性(电导率为10-3 S·cm-1),在能源领域具有广泛的应用前景。为了进一步提高CuS作为锂离子电池负极材料时的比容量,对CuS进行改性。通过在室温液相条件下的歧化反应将硫单质与CuS进行复合,提升了其电化学性能。实验结果表明,合成的CuS@7S复合材料在0.05~0.5 A·g-1的不同电流密度下都有较高的比容量和较高的库伦效率,CuS@7S复合材料在0.05 A·g-1电流密度下的放电比容量为1 075 mA·h·g-1,相比于CuS,其得到了极大的提高。表明S与CuS的复合可为电化学储能提供更多的活性物质,改善材料的导电性,成功提升电极材料比容量。  相似文献   

10.
以普鲁士蓝(PB)作为前驱体,通过固相烧结法在氮气环境中制备FeSe2材料,结合聚吡咯(PPy)优良的导电性能,利用原位氧化聚合法包覆聚吡咯,设计出了FeSe2@PPy复合材料。在三电极体系中,以2 mol/L KOH溶液为电解液、FeSe2@PPy复合材料为工作电极、Hg/HgO电极为参比电极,FeSe2@PPy复合材料表现出了优良的电化学性能:在0.5 A·g-1电流密度下的比电容高达1 177 F·g-1。同时也测量了FeSe2@PPy复合材料电极的循环性能:在0.5 A·g-1电流密度下,经过3 000次充放电测试后比电容保持率为90.5%。电化学测试结果表明该复合材料在超级电容器应用方面具有一定的优势。  相似文献   

11.
二硫化铼(ReS2)由于极弱的层间范德华力和独特的1T’相,使其非常适合作为钠离子电池(SIB)的负极材料,但是由于ReS2具有电导率较低和充放电过程中体积膨胀的缺点,制约了其SIB性能的进一步提高。制备了一种碳包覆ReS2(ReS2/C)纳米球复合材料。通过水热反应制成自组装的ReS2纳米球,ReS2纳米球与葡萄糖混合后高温碳化得到ReS2/C,碳在ReS2纳米球间形成均匀的三维(3D)碳导电网络。对ReS2/C负极进行了电化学性能测试。结果表明,3D碳导电网络能够提供电子快速传输的通道,并且3D碳导电网络包覆活性材料可以更好地承受结构应力。得益于均匀碳涂层形成的3D碳导电网络,ReS2/C负极表现出优异的循环稳定性和倍率性能。研究结果表明,ReS2/C负极在电流密度0.1、0.2、0.5、1、2和5 A·g-1时,放电比容...  相似文献   

12.
铋(Bi)作为负极材料表现出比石墨更高的理论容量,引起了广泛的关注。然而,在锂化过程中,较大的体积变化和较差的循环稳定性阻碍了Bi负极的发展。为了克服上述缺点,通过电化学原位还原将钒酸铋负极转化为具有三维蜂窝结构的纳米Bi负极,并进一步研究Bi负极充放电机理及形貌变化。结果表明:纳米Bi因具有大的比表面积为锂离子嵌入提供了更多的活性位点,带来了高的比容量;同时,其三维蜂窝结构为Bi纳米颗粒在充放电过程中的体积变化提供了机械应变空间,缓解了Bi的体积膨胀,提高了电极的稳定性。研究表明,纳米Bi负极在100 mA·g-1下的稳定放电比容量为497.5 mAh·g-1。本研究为高能量锂离子电池负极提供了一种新的途径,使得纳米Bi有望成为锂离子电池高能负极的潜在候选者。  相似文献   

13.
以废弃的中药废渣作为前驱体,Ni(NO3)2为原位造孔剂,尿素为氮源,采用水热法进行氮原子掺杂改性,再经预碳化-活化法制备氮掺杂生物质碳(Ni-N-CMW)。研究表明制备的生物质碳材料具有丰富的孔隙结构,改性掺杂的生物质碳材料Ni-N-CMW比表面积和平均孔径分别为2234.17 m2·g-1和1.86 nm。对生物质碳材料进行电化学性能测试,结果表明氮掺杂改性生物质碳材料比电容为405 F·g-1,明显高于未掺杂的生物质碳(256 F·g-1),且在电流密度增加至8 A·g-1时,Ni-N-CMW比电容依然能达到332 F·g-1,电容保持率高达82.1%。除此之外,在5000次循环充放电结束后仍能保持91.2%的比容量,具有良好的循环稳定性。本研究不仅提供了一种回收利用中药废渣的方法,而且为进一步发展中药废渣在电容器电极材料领域的应用提供了理论依据。  相似文献   

14.
金属-有机框架(MOF)衍生的过渡金属硒化物和多孔碳纳米复合材料具有巨大的储能优势,是应用于电化学储能的优良电极材料。采用共沉淀法制备CoFe类普鲁士蓝(CoFe-PBA)纳米立方,并通过静电组装在CoFe-PBA上包覆聚吡咯(PPy)得到CoFe-PBA@PPy;通过在400℃氮气中退火并硒化成功制备了氮掺杂的碳(NC)包覆(CoFe)Se2的(CoFe)Se2@NC纳米复合材料,并对其结构和形貌进行了表征。以(CoFe)Se2@NC为电极制备了超级电容器,测试了其电化学性能,结果表明,在电流密度1 A/g时超级电容器的比电容达到1047.9 F/g,在电流密度5 A/g下1000次循环后具有良好的循环稳定性和96.55%的比电容保持率。由于其性能优越、无毒、成本低和易于制备,未来(CoFe)Se2@NC纳米复合材料在超级电容器中具有非常大的应用潜力。  相似文献   

15.
以单壁碳纳米管(SWCNT)为碳源,氯化镍为金属源,硫脲为氮源和硫源,通过水热和高温热解方法制备N,S-Ni@S@C复合材料,并对复合材料进行物理表征和电化学性能测试。结果表明,SWCNT与硫化镍、氮化镍复合的结构不仅能提高电极材料的电导率,还能提供更多的活性位点供电解质离子插入或脱出,从而显著提高电化学性能。在三电极体系下,N,S-Ni@S@C复合材料具有较高的电压窗口(1.5 V)和优异的充放电能力,在电流密度为1 A·g-1下,N,S-Ni@S@C的比电容可达162.45 F·g-1。其比电容与SWCNT相比提高了2.61倍,与SWCNT和氯化镍复合材料(C@Ni)相比提高了19倍,与SWCNT和硫脲复合材料(C@S@N)相比提高了16倍。此外,以N,S-Ni@S@C复合材料为正极,商业活性炭(YP50F)为负极,组装得到非对称型超级电容器(N,S-Ni@S@C//AC)。该非对称型超级电容器在功率密度为818.78 W·kg-1时,其能量密度可达41.03 W·h·kg-1,在电流密度为1....  相似文献   

16.
通过湿法纺丝工艺成功制备了纳米硅/还原氧化石墨烯复合纤维材料,并对其进行形貌表征与电化学性能测试。纳米硅颗粒嵌入石墨烯层间褶皱的结构具有限制硅材料在储锂过程中体积膨胀的作用,适于作为锂离子电容器负极。同时,研究了锂离子电容器多孔活性炭正极材料的双电层电容特性,通过组装成对称超级电容器,对其电化学性能进行测试,并结合材料的形貌,分析其作为锂离子电容器正极的合理性。为使正负极电荷匹配,分别对负极硅碳纤维和正极活性炭材料组装的锂离子半电池的倍率、循环稳定性、电化学阻抗等电化学性能进行了测试。结果表明,纳米硅/还原氧化石墨烯复合纤维材料的比容量最高可达826.2 mA·h/g(在电流密度为0.2 A/g时),活性炭比容量可达39.9 mA·h/g。组装成的锂离子电容器在合理的匹配条件下,充放电首圈循环比容量可达58.2 mA·h/g (在电流密度为0.2 A/g时),能量密度为26.8 W·h/kg,循环100圈后,比容量保持率降至41.7%。  相似文献   

17.
通过简单的水热法合成了由纳米颗粒自组装而成的分等级中空微球结构WO3和Co3O4/WO3材料,整个实验过程中不添加任何的表面活性剂和模板剂,符合绿色化学发展理念。对样品的形貌、结构、化学成分和气敏性能进行了表征。结果表明,Co3O4/WO3复合材料成功构筑p-n异质结并呈中空微球结构。在气敏性能测试中,Co3O4/WO3复合材料传感器在最佳工作温度50℃下对体积分数为1×10-5的H2S气体的响应值为42.1,约为WO3传感器的3.37倍,响应时间仅为8 s。本实验还进行了1×10-8~5×10-5不同体积分数的H2S气体连续循环检测,检测下限低至1×10-8。同时,所制备的传感器具有良好的稳定性、选择性和重现性。此外...  相似文献   

18.
基于施主掺杂原理,制备了掺有微量磷元素的n型硅负极材料,为改善其循环性能,通过碳包覆的方法进一步制备了硅/碳复合锂离子电池负极材料。利用XRD、SEM、恒流充放电、交流阻抗谱(EIS)和循环伏安法(CV)等测试手段对所制n型硅及硅/碳复合材料的结构、形貌和电化学性能进行了表征分析。结果显示:所制n型硅具有与普通硅一致的晶体结构、良好的充放电平台、较高的容量以及很好的导电性,其电化学性能在碳包覆后有所改善,第一次放电比容量可达1 776.7 mAh/g,15次循环后仍可达1 000 mAh/g以上,库仑效率均保持在98%左右。  相似文献   

19.
黄晓霞 《电子质量》2022,(10):167-170
锂离子电池作为一种清洁能源,受到社会的青睐。但是,目前商业化的石墨负极材料,能量密度和功率密度相对较低,不能满足下一代高性能锂离子电池的需求,开发高性能的锂离子电池负极材料成为当今一项十分紧迫的任务。二氧化钼(MoO2)具有导电性好、机械性能好和理论容量高等优点,是目前锂离子电池负极材料研究的热点材料之一。以磷钼酸为钼源,离子液体作为溶剂,采用溶剂热法进行反应,在氩气气氛下煅烧后获得MoO2-C纳米粒子,将该材料应用于锂离子电池负极材料中,发现其具有良好的电化学性能。在1 A g-1的电流密度下,循环50圈后比容量还有569 m A h g-1。MoO2纳米颗粒的平均粒径在20 nm,提供了超短的锂离子扩散路径,颗粒外层的碳层提供了电子快速传导的通道,因此该材料具有很高的比容量和良好的大倍率性能。  相似文献   

20.
采用机械球磨法合成LiFePO_4/膨胀石墨复合材料,讨论了膨胀石墨不同添加量对复合材料电化学性能的影响。运用扫描电镜、四探针测试和恒流充放电等对材料的表面形貌、电阻率和电化学性能进行了研究。结果表明:当膨胀石墨的添加量为质量分数1.0%时,其电化学性能最优异,0.2C放电比容量可达到164.2mAh/g,1.0C循环60次后,其放电比容量仍有151.6mAh/g,3.0C充放电后,其容量保持率仍有89.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号