首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cold expansion is an efficient way to improve the fatigue life of an open hole. The residual stress fields of cold expansion holes are vital for key components designing, manufacturing and fatigue properties assessment. In this paper, three finite element models have been established to study the residual stress fields of cold expansion hole, experiments were carried out to measure the residual stress of cold expansion hole and verify simulation results. Three groups of specimens with different cold expansion levels are examined by fatigue test. The fracture surfaces of specimens are observed by scanning electron microscope. The finite element method (FEM) results show, with interference values develop, the maximum values of circumferential residual compressive/tensile stresses increase in “infinite” and “finite” domain, and a higher positive stress values are obtained at the boundary of “finite” domain. The effects of the friction between the mandrel and the hole’s surface and two cold expansion techniques on the distribution of residual stress is local, which only affects the radial residual stress around the maximum value and the circumferential residual stress near the hole’s edge. Crack always initiates near entrance face and the crack propagation speed along transverse direction is faster than that along axial direction.  相似文献   

2.
本文基于有限元技术模拟了开缝衬套挤压和直接芯棒挤压两种孔挤压工艺,对比研究了两种不同工艺导致的孔壁材料轴向流动和孔壁残余应力场。结果表明:开缝衬套挤压可有效抑制材料向挤出端流动,这在飞机夹层孔结构挤压中可减小夹层间隙尺寸;衬套开缝对应孔壁区域残余应力有突变,但仍然是对抗疲劳有利的压应力,而非拉应力;开缝衬套挤压挤入端孔边是压应力,而直接芯棒挤压是拉应力;相同干涉量条件下两种工艺引入的残余压应力峰值近似,但开缝衬套挤压残余压应力场域较直接芯棒挤压增大了约1 mm.  相似文献   

3.
In this paper a series of residual stress measurements and fatigue crack growth tests have been carried out using aluminium alloy 2650 specimens containing cold expanded and non cold expanded holes. Residual stress measurements have been done after cold expansion and after various loading and temperature conditions. In order to measure an angular variation of residual stresses, X-ray and a new technique called the Garcia–Sachs method have been employed. Results revealed that residual stress relaxation occurred as a result of exposure at 150°C. The magnitude of relaxation was shown to be dependent on the level and the sign of externally applied load. Fatigue crack growth tests have been carried out at 20°C and 150°C for both cold expanded and non-cold expanded conditions. Fatigue crack growth rates in specimens containing cold expanded fastener holes were affected significantly by elevated temperature exposure. Depending on the exposure time and loading conditions the fatigue life improvement was found to be between one and greater than 10 for tests at 20°C.  相似文献   

4.
The split sleeve cold expansion process is a cost effective method of enhancing the fatigue performance of aircraft fastener holes. However, the 3‐D nature of the induced residual stress fields is not fully understood. For this research, 2‐D and 3‐D models with uniform hole expansion and 3‐D models with expansion produced by contact with a rigid mandrel were developed. The models’ relative capabilities of capturing the residual stress fields were then evaluated. The residual stress profiles varied significantly through the thickness of the workpiece and were also strongly influenced by the direction of mandrel motion. Therefore the uniform expansion models were inadequate. The 3‐D contact models indicate that the mandrel entry face is the critical fatigue location, reporting the lowest circumferential compressive stresses adjacent to the hole. The effect of varying the frictional coefficient and plastic hardening laws were also investigated using the 3‐D contact models.  相似文献   

5.
The fatigue life of 7075‐T6 aluminium specimens with countersunk fastener holes with cold expansion and interference‐fit fasteners with short edge margins was studied. The study was performed experimentally and through finite element analysis. The experiments measured the total fatigue life and crack growth. The results from the finite element analysis consisted of tangential residual stress profiles, which were combined with applied cyclic stresses for fatigue analysis. The experiments showed that the fatigue life improved with interference‐fit fasteners and cold expansion at all edge margins. The fatigue life also increased with increasing edge margin. The finite element results were used to make fatigue life predictions that corresponded reasonably well with the experimental results.  相似文献   

6.
Comparable fatigue tests were carried out on aluminium alloy 7475-T7351 double butt joints with untreated and with cold expanded holes. Surprisingly, the behaviour of the specimens having cold expanded holes was worse than that of specimens with untreated holes. This result was attributed to the surface upset which was present in cold expanded holes. Several hypotheses were formulated and experimentally verified to overcome this problem, such as deeper hole deburring, rivet diameter, joint design and grip material, steel instead of aluminium alloy.Additional tests demonstrated that the problem was not present in sealed joint as the surface upset was hidden in the sealant thickness. Sealants have detrimental effects in the fatigue resistance of riveted joints, as they increase the load transferred by rivet bearing. The hole expansion is beneficial in this condition, while in un-sealed joints its effect must be accurately evaluated.Other authors too highlighted possible problems due to surface upset, up to suggest to eliminate it. Only in a very few cases, a reduction of fatigue life as a consequence of hole expansion was observed.  相似文献   

7.
The United States Air Force has requirements to inspect and cold expand potentially thousands of fastener holes for an aircraft fleet, and the presence of existing cracks at those fastener holes is expected. Fatigue experiments were performed to investigate the resulting fatigue crack growth life of a fastener hole that contained a representative ‘unknown’ crack at the time of inspection (approximately 0.050 in. in length) at a short edge margin hole that was then cold expanded and compare that to a non‐cold expanded hole and a cold expanded hole with no pre‐existing cracks. The United States Air Force analytical approach used to account for the benefit due to cold expansion was compared to the experimental data and does not consistently provide conservative predictions.  相似文献   

8.
Abstract— In the present study the effects of cold expansion of a hole on the location of fatigue crack initiation and life of LY12CZ alloy sheets are experimentally investigated and a quantitative expression of fatigue crack initiation life presented. Test results and analysis show that there may exist an optimum amount of cold expansion, for which both the coefficient of the resistance to fatigue crack initiation and the threshold are increased, and that the direction of cold expansion has no appreciable effect on fatigue crack initiation life. Observations show that, after cold expansion the fatigue crack nearly always initiates on the final entry face from which the mandrel is introduced into the hole during the final cold expansion process. Therefore it may be thought that the entry face is less resistant to fatigue crack initiation. In addition, the assumption of equivalence of residual stresses and also the strain hardening conditions on both the entry and exit faces may be questionable.  相似文献   

9.
Different degrees of cold working (ranging from 0% to 5.58%) were applied to the hole of plate specimens of 7475-T7351 aluminium alloy. These specimens were then subjected to cyclic loading. In each test, the crack initiation was detected and subsequently the crack length was monitored, using a video camera system. The experimental results were analysed in order to determine the cold working effect on the fatigue initiation period, on the propagation life and finally on the overall fatigue life. It was found, for example, that the propagation life improvement factor for a degree of cold working of 5.58% is about 43.0 and 4.9 for applied nominal stresses of 191 and 300 MPa, respectively. For the same conditions, the fatigue life improvement factor is about 3.2 and 1.5. A numerical analysis was also performed, using three-dimensional finite element method to establish the stress and strain distributions resulting from the superposition of the cold working process and the fatigue loading. Then, the results were used in connection with the non-cold worked hole data for calculating the cold worked plate initiation period according to the strain-life concept; for determining the propagation life, the weight function technique was applied. The predictions are very close to the experimental results.  相似文献   

10.
J. Liu  W.X. Gou  W. Liu  Z.F. Yue 《Materials & Design》2009,30(6):1944-1949
In this study, a series of tests were conducted in aluminum alloy 2A12-T4 to investigate the effect of hammer peening process on the fatigue behavior of holes in specimens. The fracture surfaces of the specimens were observed by means of an optical microscope in order to disclose the mechanism of fatigue failure. The finite element method (FEM) was used to analyze the distribution of residual stress around the holes which were preliminarily treated with hammer peening. The results revealed that the crack of a hammer peened hole always initiated at the peened face. The fatigue life of these hammer peened holes significantly was prolonged five fold compared to non-hammer peened holes. Their fatigue life showed a positive correlation with the residual plastic strain which was induced by hammer peening process. The longest fatigue life was found in cases in which the residual plastic strain surrounded the whole bore of the hole but did not emerge at the fix face.  相似文献   

11.
The aim of this research was the development of an analytical model for plasticity-induced fatigue crack closure for cold expanded holes. This paper extends Nowell's plane stress model of plasticity-induced crack closure for a plate with a circular hole and two radial symmetric cracks. The possibility of existence of an initial residual stress field is also taken into account. This model has potential to be applied to other cracked geometries and arbitrary residual stress fields, although the paper is focused on the study of cold-expanded holes. Hole cold-expansion is widely used in aircraft industry, for improving the fatigue performance of rivet holes by delaying fatigue crack propagation. This paper shows that the residual stress field due to cold-expansion has a strong influence on the closure behaviour and therefore on fatigue crack propagation. The analytical model developed, was compared with finite element analyses of plasticity-induced crack closure with and without residual stresses. Finally, the model was used to predict fatigue lives for some experiments recently reported in the literature for fatigue crack propagation from cold-expanded holes. Predicted fatigue lives correlate well with experimental data.  相似文献   

12.
In this paper the effect of cold expansion on fatigue life improvement of aluminum alloy 2024-T3 plates used in double shear lap joints is investigated experimentally by conducting fatigue tests and numerically by implementing finite element simulations. In the experimental part, fatigue tests were carried out on the plates with cold expansion levels of 0%, 1.5% and 4.7% which were used in double shear lap joints. In the numerical study, three-dimensional finite element models were employed to predict stress distributions in the cold expanded plates used in the double shear lap joint. The results obtained from finite element simulation, have been employed to explain the trends which were observed in the experimentally attained SN data and the fatigue crack initiation location. The experimental and numerical results showed that cold expansion improves fatigue life at low load levels and the life enhancement is more for the bigger cold expansion size. However, the fatigue life improvement is smaller in double shear lap joints compared to a single cold expanded plate.  相似文献   

13.
The beneficial effects of cold expansion have been well documented in previous studies, yet the performance of cold expanded plates exposed to elevated temperatures is an area of technical interest. In this research, finite element (FE) simulations along with experimental fatigue tests have been carried out to investigate the effect of exposure to elevated temperature on residual stress distribution and subsequent fatigue life of cold expanded fastener holes. According to the obtained results, creep stress relaxation occurs due to exposure to 120 °C for 50 h. FE results demonstrate a non-uniform residual stress relaxation regime through the plate thickness around the cold expanded hole and the fatigue test results show that the subsequent fatigue lives have significantly decreased.  相似文献   

14.
FATIGUE OF THICK-SECTION COLD-EXPANDED HOLES WITH AND WITHOUT CRACKS   总被引:1,自引:0,他引:1  
Abstract— Fatigue tests under spectrum loading were conducted to evaluate hole cold-expansion in thick-section open-hole aluminium alloy specimens, some of which contained residual fatigue cracks before cold expansion. Cold expansion resulted in an increase in life by a factor of about 7. Small residual fatigue cracks did not inhibit the effectiveness of the cold-expansion process, indicating that it may not be essential to remove such cracks prior to hole cold-expansion. The increase in life is primarily associated with a reduced crack propagation rate compared with that for cracks from non-cold-expanded holes. Cold-expanded hole fractures displayed a marked disparity in crack depths adjacent to the two faces of the specimens. Considerable differences were evident in crack depths and fatigue crack areas at failure between cold-expanded and non-cold-expanded hole specimens. These findings have ramifications in the damage tolerance assessment of aircraft structures.  相似文献   

15.
In this study, the effects of friction stir spot weld arrangements as multi type on fatigue behavior of friction stir spot welded joints is investigated. The joints that are considered with five different styles for friction stir spot welded joints: one-row four joints parallel to loading direction, two-row four-joint specimen, one-row four joints perpendicular to the loading axis, three-row as diamond shape with four joints in each edge and five friction stir spot welded specimen in three rows that middle row consist three joints. The correlation between micro hardness, cyclic material constants and mechanical strength of different zones around the friction stir spot welds are assumed to be proportional to base material hardness. A non-linear finite element analysis was carried out for simulating tensile shear multi friction stir spot welded joints with ANSYS software by considering gap effects. Using the local stress and strain calculated with finite element analysis, fatigue lives of specimens were predicted with Morrow, modified Morrow and Smith–Watson–Topper (SWT) damage equations. Experimental fatigue tests of welded specimens have been carried out using constant amplitude load control servo-hydraulic fatigue testing machine. The results reveal that there is relatively good agreement between fatigue life predictions and experimental data in reasonable fatigue life regime.  相似文献   

16.
A recognized way of improving the fatigue resistance of a fastener hole is to introduce compressive tangential residual stress around it. This can be achieved by using a cold expansion method in which an oversized pin or ball is forced through the hole to produce a local plastic region surrounded by an elastic one. Once the pin or ball is removed allowing the elastic region to spring back it results in compressive tangential residual stress around the hole. In practise, however, it is found that such a cold expansion method creates a non‐uniform residual stress distribution through the plate thickness and even tensile residual stress can be created at the entrance and exit faces. In this paper a new method of cold expansion is proposed. It uses a tapered pin with a mating tapered split sleeve and creates an almost uniform compressive residual stress around the hole as shown by FE method. Also, fatigue tests were carried out to verify that the method does significantly improve fatigue life. Finally the tangential residual stress distribution and fatigue life improvement of this new method were compared with those of a well‐established cold expansion method and it was shown that the new method is more efficient in improving fatigue life.  相似文献   

17.
The cold expansion of circular holes is known to improve resistance to fatigue. In this study the effect of the cold expansion of a circular hole on fatigue life by means of a quasi-elliptical pin was investigated. Additional evaluations were conducted, including determinations of the effects of crack propagation from the hole. The major life extension was obtained through slower crack growth in the short-crack stage. The decrease in fatigue crack growth in cold-expanded specimens was related to higher crack-opening stresses which are a consequence of the presence of compressive residual stresses arising from cold expansion. In this study, an experimental investigation was carried out to quantify the effect of the cold expansion on the initiation and the propagation of the fatigue crack and was discussed. Fatigue life improvement of the cold-worked hole specimen was explained by determining the hardness results around the cold-worked hole. The results indicate that significant life improvements can be obtained through cold expansion applied with a quasi-elliptical pin in this work with the optimum results being obtained when the pin diameter is 4% larger than the diameter of the specimen hole. Also, a brief examination of the effect of the rivet shape on the fatigue life of a riveted specimen was carried out. To lengthen the fatigue life of a riveted plate which uses countersunk head rivets, the shape of the countersink and the rivet head were improved. The experimental results showed that the fatigue life of the riveted plate was improved where the improved rivet was used.  相似文献   

18.
Fastener load-transferred experiments and fatigue tests of the scarfed lap riveted joints with different lap angle were carried out. The fracture surfaces were observed by optical microscope (OM) in this paper. Both experimental and computational studies were described and compared when possible. Based on the qualitative finite element analysis (FEA), the multi-axial fatigue life of the scarfed lap riveted joints has been predicted by Smith–Watson–Topper (SWT) method and Wang–Brown (WB) method respectively. Both of the test results and predicted results show that fatigue life of scarfed lap riveted joints is remarkably increased after introducing lap angle into the faying surface. 8 mm-thick specimens with the lap angle of 1.68 °C exhibit the best fatigue performance, and 20 mm-thick with the lap angle of 3.37 °C do in the present study. Compared with the result of WB theory, the result of SWT theory is more conservative and reliable. For structures’ reliability designs, SWT theory and WB theory are all fallibility.  相似文献   

19.
Cold expansion process is a well-known technique for improving the fatigue life of aerospace structures by introducing a compressive residual stress around the fastener holes. However, there are concerns about the residual stress distribution around those holes which are located near the free edges of structure. The purpose of this study is to investigate the influence of edge distance ratio (e/D) on the residual stress distribution around a cold expanded hole in Al 2024 alloy. A two-dimensional finite element simulation was carried out with various degrees of cold expansion and various values of e/D. It was found that for edge distance ratios less than e/D = 3, there are considerable effects on the residual stress profile. Also, the dependency of residual stress distribution on the degree of expansion was reduced significantly for small e/Ds. The results revealed that the bulging of the plate free edge increases with reduction of e/D but in worse cases the maximum bulging at the plate free edge was lower than 3% of the hole radius. The weight function method was then used for determining stress intensity factors for a crack emanating from a cold expanded hole.  相似文献   

20.
Cold expansion of fastener holes is a common way of improving fatigue performance of airframes. Among the several techniques applicable, the split-sleeve method is the most accepted in creating beneficial compressive residual stresses around expanded holes. In the present work, residual stresses at expanded holes in several types of aluminium plates produced by two different techniques, split-sleeve and roller burnishing, have been evaluated by the novel destructive Sachs method and then compared. It was found that stress distribution particularly at the vicinity of the hole was sensitive to the method of expansion and plate thickness, due to differing characteristics of the plastic material flow. Thus, secondary reverse yielding after cold expansion found to reduce residual hoop stresses at the edge of the hole, and excessive expansion above a limit, was thought to increase reverse yielding. S–N data revealed that no benefit was gained from expanding beyond this limit. It was suggested that the reduction in the number of cycles to crack initiation or more often to crack growth was due to increased reverse yielding at the vicinity of the expanded hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号