首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solute carrier (SLC) and ATP-binding cassette (ABC) transporters comprise a variety of proteins expressed on cell membranes responsible for intrusion or extrusion of substrates, respectively, including nutrients, xenobiotics, and chemotherapeutic agents. These transporters mediate the cellular disposition of tyrosine kinase inhibitors (TKIs), and their genetic variants could affect its function, potentially predisposing patients to chronic myeloid leukaemia (CML) and modulating treatment response. We explored the impact of genetic variability (single nucleotide variants—SNVs) of drug transporter genes (ABCB1, ABCG2, SLC22A1, and SLC22A5) on CML susceptibility, drug response, and BCR-ABL1 mutation status. We genotyped 10 SNVs by tetra-primers-AMRS-PCR in 198 CML patients and 404 controls, and assessed their role in CML susceptibility and prognosis. We identified five SNVs associated with CML predisposition, with some variants increasing disease risk, including TT genotype ABCB1 (rs1045642), and others showing a protective effect (GG genotype SLC22A5 rs274558). We also observed different haplotypes and genotypic profiles associated with CML predisposition. Relating to drug response impact, we found that CML patients with the CC genotype (rs2231142 ABCG2) had an increased risk of TKI resistance (six-fold). Additionally, CML patients carrying the CG genotype (rs683369 SLC22A1) presented a 4.54-fold higher risk of BCR-ABL1 mutations. Our results suggest that drug transporters’ SNVs might be involved in CML susceptibility and TKI response, and predict the risk of BCR-ABL1 mutations, highlighting the impact that SNVs could have in therapeutic selection.  相似文献   

2.
Several recent works have raised the possibility of the contribution of the lymphocyte activation gene 3 (LAG3) protein in the inflammatory processes of multiple sclerosis (MS). Results of studies on the possible association between LAG3 gene variants and the risk of MS have been inconclusive. In this study, we tried to show the possible association between the most common single nucleotide variants (SNVs) in the CD4 and LAG3 genes (these two genes are closely related) and the risk of MS in the Caucasian Spanish population. We studied the genotypes and allelic variants CD4 rs1922452, CD4 rs951818, and LAG3 rs870849 in 300 patients diagnosed with MS and 400 healthy patients using specific TaqMan-based qPCR assays. We analyzed the possible influence of the genotype frequency on age at the onset of MS, the severity of MS, clinical evolutive subtypes of MS, and the HLADRB1*1501 genotype. The frequencies of the CD4 rs1922452, CD4 rs951818, and LAG3 rs870849 genotypes and allelic variants were not associated with the risk of MS and were unrelated to gender, age at onset and severity of MS, the clinical subtype of MS, and HLADRB1*1501 genotype. The results of the current study showed a lack of association between the CD4 rs1922452, CD4 rs951818, and LAG3 rs870849 SNVs and the risk of developing MS in the Caucasian Spanish population.  相似文献   

3.
4.
Proper embryo implantation depends on the tolerance of the maternal immune system to the fetus and its foreign paternal antigens. During implantation and early pregnancy, the dominant leukocytes in the uterus are uterine NK cells, expressing killer immunoglobulin-like receptors (KIR). KIRs recognize human leukocyte antigens (HLA-C) on the human trophoblast inherited from the father and mother. The antigenic peptides presented by the HLA are formed via their cleavage by endoplasmic reticulum aminopeptidases ERAP1 and ERAP2. The aim of this study was to assess the association of combined KIR genes and their HLA-C ligands, as well as ERAP1 and ERAP2 polymorphisms with recurrent implantation failure after in vitro fertilization (RIF). We tested 491 couples who underwent in vitro fertilization (IVF) and 322 fertile couples. Genotype CC rs27044 ERAP1 in female with a male’s HLA-C1C1 or HLA-C1C2 protected from RIF (p/pcorr. = 0.005/0.044, OR = 0.343; p/pcorr. = 0.003/0.027, OR = 0.442, respectively). Genotype TT rs30187 ERAP1 in female with a male’s HLA-C1C2 genotype increased the risk of RIF. Summarizing, in the combination of female ERAP1 and an HLA-C partner, the rs30187 C>T and rs27044 C>G polymorphisms play an important role in implantation failure.  相似文献   

5.
The insulin-like growth factor 1 (IGF1) signaling pathway mediates multiple cancer cell biological processes. IGF1 receptor (IGF1R) expression has been used as a reporter of the clinical significance of non-small-cell lung carcinoma (NSCLC). However, the association between IGF1R genetic variants and the clinical utility of NSCLC positive for epidermal growth factor receptor (EGFR) mutation is not clear. The current study investigated the association between the IGF1R genetic variants, the occurrence of EGFR mutations, and clinicopathological characteristics in NSCLC patients. A total of 452 participants, including 362 adenocarcinoma lung cancer and 90 squamous cell carcinoma lung cancer patients, were selected for analysis of IGF1R genetic variants (rs7166348, rs2229765, and rs8038415) using real-time polymerase chain reaction (PCR)genotyping. The results indicated that GA + AA genotypes of IGF1R rs2229765 were significantly associated with EGFR mutation in female lung adenocarcinoma patients (odds ratio (OR) = 0.39, 95% confidence interval (CI) = 0.17–0.87). Moreover, The GA + AA genotype IGF1R rs2229765 was significantly associated with EGFR L858R mutation (p = 0.02) but not with the exon 19 in-frame deletion. Furthermore, among patients without EGFR mutation, those who have at least one polymorphic A allele of IGF1R rs7166348 have an increased incidence of lymph node metastasis when compared with those patients homozygous for GG (OR, 2.75; 95% CI, 1.20–2.31). Our results showed that IGF1R genetic variants are related to EGFR mutation in female lung adenocarcinoma patients and may be a predictive factor for tumor lymph node metastasis in Taiwanese patients with NSCLC.  相似文献   

6.
Genome-wide association studies (GWAS) found locus 3p21.31 associated with severe COVID-19. CCR5 resides at the same locus and, given its known biological role in other infection diseases, we investigated if common noncoding and rare coding variants, affecting CCR5, can predispose to severe COVID-19. We combined single nucleotide polymorphisms (SNPs) that met the suggestive significance level (P ≤ 1 × 10−5) at the 3p21.31 locus in public GWAS datasets (6406 COVID-19 hospitalized patients and 902,088 controls) with gene expression data from 208 lung tissues, Hi-C, and Chip-seq data. Through whole exome sequencing (WES), we explored rare coding variants in 147 severe COVID-19 patients. We identified three SNPs (rs9845542, rs12639314, and rs35951367) associated with severe COVID-19 whose risk alleles correlated with low CCR5 expression in lung tissues. The rs35951367 resided in a CTFC binding site that interacts with CCR5 gene in lung tissues and was confirmed to be associated with severe COVID-19 in two independent datasets. We also identified a rare coding variant (rs34418657) associated with the risk of developing severe COVID-19. Our results suggest a biological role of CCR5 in the progression of COVID-19 as common and rare genetic variants can increase the risk of developing severe COVID-19 by affecting the functions of CCR5.  相似文献   

7.
In the human genome, the fraction of protein-coding genes that are stably transcribed is only up to 2%, with the remaining numerous RNAs having no protein-coding function. These non-coding RNAs (ncRNAs) have received considerable attention in cancer research in recent years. Breakthroughs have been made in understanding microRNAs and small interfering RNAs, but larger RNAs such as long ncRNAs (lncRNAs) remain an enigma. One lncRNA, HOX antisense intergenic RNA (HOTAIR), has been shown to be dysregulated in many types of cancer, including breast cancer, colorectal cancer, and hepatoma. HOTAIR functions as a regulatory molecule in a wide variety of biological processes. However, its mechanism of action has not been clearly elucidated. It is widely believed that HOTAIR mediates chromosomal remodeling and coordinates with polycomb repressive complex 2 (PRC2) to regulate gene expression. Further study of HOTAIR-related pathways and the role of HOTAIR in tumorigenesis and tumor progression may identify new treatment targets. In this review, we will focus on the characteristics of HOTAIR, as well as data pertaining to its mechanism and its association with cancers.  相似文献   

8.
Apolipoprotein B (ApoB) plays a crucial role in lipid and lipoprotein metabolism. The effects of APOB locus variants on lipid profiles, metabolic syndrome, and the risk of diabetes mellitus (DM) in Asian populations are unclear. We included 1478 Taiwan Biobank participants with whole-genome sequence (WGS) data and 115,088 TWB participants with Axiom genome-wide CHB array data and subjected them to genotype–phenotype analyses using APOB locus variants. Five APOB nonsynonymous mutations, including Asian-specific rs144467873 and rs13306194 variants, were selected from participants with the WGS data. Using a combination of regional association studies, a linkage disequilibrium map, and multivariate analysis, we revealed that the APOB locus variants rs144467873, rs13306194, and rs1367117 were independently associated with total, low-density lipoprotein (LDL), and non-high-density lipoprotein (non-HDL) cholesterol levels; rs1318006 was associated with HDL cholesterol levels; rs13306194 and rs35131127 were associated with serum triglyceride levels; rs144467873, rs13306194, rs56213756, and rs679899 were associated with remnant cholesterol levels; and rs144467873 and rs4665709 were associated with metabolic syndrome. Mendelian randomization (MR) analyses conducted using weighted genetic risk scores from three or two LDL-cholesterol-level-associated APOB variants revealed significant association with prevalent DM (p = 0.0029 and 8.2 × 10−5, respectively), which became insignificant after adjustment for LDL-C levels. In conclusion, these results indicate that common and rare APOB variants are independently associated with various lipid levels and metabolic syndrome in Taiwanese individuals. MR analyses supported APOB variants associated with the risk of DM through their associations with LDL cholesterol levels.  相似文献   

9.
Stroke is currently the leading cause of functional impairments worldwide. Folate supplementation is inversely associated with risk of ischemic stroke. Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme involved in folate metabolism. The aim of this study is to examine whether genetic variants in MTHFR gene are associated with the risk of ischemic stroke and fasting total serum homocysteine (tHcy) level. We genotyped nine tag SNPs in the MTHFR gene in a case-control study, including 543 ischemic stroke cases and 655 healthy controls in China. We found that subjects with the rs1801133 TT genotype and rs1801131 CC genotype had significant increased risks of ischemic stroke (adjusted odds ratio (OR) = 1.82, 95% confidence interval (CI): 1.27–2.61, p = 0.004; adjusted OR = 1.99, 95% CI: 1.12–3.56, p = 0.01) compared with subjects with the major alleles. Haplotype analysis also found that carriers of the MTHFR CTTCGA haplotype (rs12121543-rs13306553-rs9651118-rs1801133-rs2274976-rs1801131) had a significant reduced risk of ischemic stroke (adjusted OR = 0.53, 95% CI: 0.35–0.82) compared with those with the CTTTGA haplotype. Besides, the MTHFR rs1801133 and rs9651118 were significantly associated with serum levels of tHcy in healthy controls (p < 0.0001 and p = 0.02). These findings suggest that variants in the MTHFR gene may influence the risk of ischemic stroke and serum tHcy.  相似文献   

10.
Diverse polymorphisms have been associated with the predisposition to develop cancer. On fewer occasions, they have been related to the evolution of the disease and to different responses to treatment. Previous studies of our group have associated polymorphisms on genes related to oxidative stress (rs3736729 on GCLC and rs207454 on XDH) and DNA damage repair (rs1052133 on OGG1) with a predisposition to develop breast cancer. In the present work, we have evaluated the hypothesis that these polymorphisms also play a role in a patient’s survival. A population-based cohort study of 470 women diagnosed with primary breast cancer and a median follow up of 52.44 months was conducted to examine the disease-free and overall survival in rs3736729, rs207454 and rs1052133 genetic variants. Adjusted Cox regression analysis was used to that end. The Kaplan-Meier analysis shows that rs3736729 on GCLC presents a significant association with disease-free survival and overall survival. The polymorphisms rs1052133 on OGG1 and rs207454 on XDH show a trend of association with overall survival. The analysis based on hormonal receptor status revealed a stronger association. The CC genotype on rs207454 (XDH) was significantly associated with lower time of disease free survival (p = 0.024) in progesterone receptor negative (PGR−) patients and rs3736729 (GCLC) was significantly associated with disease free survival (p = 0.001) and overall survival (p = 0.012) in the subgroup of estrogen receptor negative (ER−) patients. This work suggests that unfavorable genetic variants in the rs207454 (XDH) and rs3736729 (GCLC) polymorphisms may act as predictors of the outcome in negative progesterone receptor and negative estrogen receptor breast cancer patients, respectively.  相似文献   

11.
Galectin 1 (Gal1) exerts immunomodulatory effects leading to therapeutic effects in autoimmune animal models. Patients with rheumatoid arthritis have been reported to show higher Gal1 serum levels than the healthy population. Our study aimed to find genetic variants on the Gal1 gene (LGALS1) modulating its expression and/or clinical features in patients with early arthritis (EA). LGALS1 was sequenced in 53 EA patients to characterize all genetic variants. Then, we genotyped rs9622682, rs929039, and rs4820293, which covered the main genetic variation in LGALS1, in 532 EA patients. Gal1 and IL-6 serum levels were measured by ELISA and Gal1 also by western blot (WB) in lymphocytes from patients with specific genotypes. Once disease activity improved with treatment, patients with at least one copy of the minor allele in rs9622682 and rs929039 or those with GG genotype in rs4820293 showed significantly higher Gal1 serum levels (p < 0.05). These genotypic combinations were also associated with higher Gal1 expression in lymphocytes by WB and lower IL-6 serum levels in EA patients. In summary, our study suggests that genetic variants studied in LGALS1 can explain heterogeneity in Gal1 serum levels showing that patients with higher Gal1 levels have lower serum IL-6 levels.  相似文献   

12.
Resistin and soluble suppression of tumorigenicity 2 (sST2) are useful predictors in patients with coronary artery disease (CAD). Their serum levels are significantly attributed to variations in RETN and IL1RL1 loci. We investigated candidate variants in the RETN locus for resistin levels and those in the IL1RL1 locus for sST2 levels and evaluated the prognostication of these two biomarkers and the corresponding variants for long-term outcomes in the patients with CAD. We included 4652, 557, and 512 Chinese participants from the Taiwan Biobank (TWB), cardiovascular health examination (CH), and CAD cohorts, respectively. Candidate variants in RETN and IL1RL1 were investigated using whole-genome sequence (WGS) and genome-wide association study (GWAS) data in the TWB cohort. The weighted genetic risk scores (WGRS) of RETN and IL1RL1 with resistin and sST2 levels were calculated. Kaplan–Meier curves were used to analyze the prognostication of resistin and sST2 levels, WGRS of RETN and IL1RL1, and their combinations. Three RETN variants (rs3219175, rs370006313, and rs3745368) and two IL1RL1 variants (rs10183388 and rs4142132) were independently associated with resistin and sST2 levels as per the WGS and GWAS data in the TWB cohort and were further validated in the CH and CAD cohorts. In combination, these variants explained 53.7% and 28.0% of the variation in resistin and sST2 levels, respectively. In the CAD cohort, higher resistin and sST2 levels predicted higher rates of all-cause mortality and major adverse cardiac events (MACEs) during long-term follow-up, but WGRS of RETN and IL1RL1 variants had no impact on these outcomes. A synergistic effect of certain combinations of biomarkers with RETN and IL1RL1 variants was found on the prognostication of long-term outcomes: Patients with high resistin levels/low RETN WGRS and those with high sST2 levels/low IL1RL1 WGRS had significantly higher all-cause mortality and MACEs rates, and those with both these combinations had the poorest outcomes. Both higher resistin and sST2 levels, but not RETN and IL1RL1 variants, predict poor long-term outcomes in patients with CAD. Furthermore, combining resistin and sST2 levels with the WGRS of RETN and IL1RL1 genotyping exerts a synergistic effect on the prognostication of CAD outcomes. Future studies including a large sample size of participants with different ethnic populations are needed to verify this finding.  相似文献   

13.
Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and is of familial origin in 20–40% of cases. Genetic testing by next-generation sequencing (NGS) has yielded a definite diagnosis in many cases; however, some remain elusive. In this study, we used a combination of NGS, human-induced pluripotent-stem-cell-derived cardiomyocytes (iPSC-CMs) and nanopore long-read sequencing to identify the causal variant in a multi-generational pedigree of DCM. A four-generation family with familial DCM was investigated. Next-generation sequencing (NGS) was performed on 22 family members. Skin biopsies from two affected family members were used to generate iPSCs, which were then differentiated into iPSC-CMs. Short-read RNA sequencing was used for the evaluation of the target gene expression, and long-read RNA nanopore sequencing was used to evaluate the relevance of the splice variants. The pedigree suggested a highly penetrant, autosomal dominant mode of inheritance. The phenotype of the family was suggestive of laminopathy, but previous genetic testing using both Sanger and panel sequencing only yielded conflicting evidence for LMNA p.R644C (rs142000963), which was not fully segregated. By re-sequencing four additional affected family members, further non-coding LMNA variants could be detected: rs149339264, rs199686967, rs201379016, and rs794728589. To explore the roles of these variants, iPSC-CMs were generated. RNA sequencing showed the LMNA expression levels to be significantly lower in the iPSC-CMs of the LMNA variant carriers. We demonstrated a dysregulated sarcomeric structure and altered calcium homeostasis in the iPSC-CMs of the LMNA variant carriers. Using targeted nanopore long-read sequencing, we revealed the biological significance of the variant c.356+1G>A, which generates a novel 5′ splice site in exon 1 of the cardiac isomer of LMNA, causing a nonsense mRNA product with almost complete RNA decay and haploinsufficiency. Using novel molecular analysis and nanopore technology, we demonstrated the pathogenesis of the rs794728589 (c.356+1G>A) splice variant in LMNA. This study highlights the importance of precise diagnostics in the clinical management and workup of cardiomyopathies.  相似文献   

14.
Ankylosing spondylitis (AS) is an inflammatory disease that belongs to the spondyloarthritis family. IL-5 and IL-9 belong to the group of Th2 cytokines of anti-inflammatory nature. Polymorphisms in their coding genes have been so far associated with various inflammatory diseases, but there are no reports regarding their involvement in AS pathogenesis to date. The purpose of the study was to investigate relationships between IL5 and IL9 genetic variants with AS susceptibility, clinical parameters as well as response to therapy with TNF inhibitors. In total 170 patients receiving anti-TNF therapy and 218 healthy controls were enrolled in the study. The genotyping of IL5 rs2069812 (A > G) and IL9 rs2069885 (G > A) single nucleotide polymorphisms was performed using the Real-Time PCR method based on LightSNiP kits assays. The present study demonstrated significant relationships between IL5 rs2069812 and IL9 rs2069885 polymorphisms and response to anti-TNF therapy. Presence of the IL5 rs2069812 A allele in patients positively correlated with better response to treatment (p = 0.022). With regard to IL9 rs2069885, patients carrying the A allele displayed better outcomes in anti-TNF therapy (p = 0.046). In addition, IL5 rs2069812 A and IL9 rs2069885 A alleles were associated with lower CRP and VAS values. The obtained results may indicate a significant role for IL-5 and IL-9 in the course of AS and response to anti-TNF therapy.  相似文献   

15.
Idiopathic superior oblique muscle palsy is a major type of paralytic, non-comitant strabismus and presents vertical and cyclo-torsional deviation of one eye against the other eye, with a large vertical fusion range and abnormal head posture such as head tilt. Genetic background is considered to play a role in its development, as patients with idiopathic superior oblique muscle palsy have varying degrees of muscle hypoplasia and, rarely, the complete absence of the muscle, that is, aplasia. In this study, whole genome sequencing was performed, and single nucleotide variations and short insertions/deletions (SNVs/InDels) were annotated in two patients each in three small families (six patients in total) with idiopathic superior oblique muscle palsy, in addition to three normal individuals in one family. At first, linkage analysis was carried out in the three families and SNVs/InDels in chromosomal loci with negative LOD scores were excluded. Next, SNVs/InDels shared by the six patients, but not by the three normal individuals, were chosen. SNVs/InDels were further narrowed down by choosing low-frequency (<1%) or non-registered SNVs/InDels in four databases for the Japanese population, and then by choosing SNVs/InDels with functional influence, leading to one candidate gene, SSTR5-AS1 in chromosome 16. The six patients were heterozygous for 13-nucleotide deletion in SSTR5-AS1, except for one homozygous patient, while the three normal individuals were wild type. Targeted polymerase chain reaction (PCR) and direct sequencing of PCR products confirmed the 13-nucleotide deletion in SSTR5-AS1. In the face of newly-registered SSTR5-AS1 13-nucleotide deletion at a higher frequency in a latest released database for the Japanese population, the skipping of low-frequency and non-registration sorting still resulted in only 13 candidate genes including SSTR5-AS1 as common variants. The skipping of linkage analysis also led to the same set of 13 candidate genes. Different testing strategies that consisted of linkage analysis and simple unintentional bioinformatics could reach candidate genes in three small families with idiopathic superior oblique muscle palsy.  相似文献   

16.
Long noncoding (lnc)RNAs are reported to be key regulators of tumor progression, including hepatocellular carcinoma (HCC). The lncRNA long intergenic noncoding RNA 00673 (LINC00673) was indicated to play an important role in HCC progression, but the impacts of genetic variants (single-nucleotide polymorphisms, SNPs) of LINC00673 on HCC remain unclear. A TaqMan allelic discrimination assay was performed to analyze the genotypes of three tagging SNPs, viz., rs9914618 G > A, rs6501551 A > G, and rs11655237 C > T, of LINC00673 in 783 HCC patients and 1197 healthy subjects. Associations of functional SNPs of LINC00673 with HCC susceptibility and clinicopathologic variables were analyzed by logistic regression models. After stratification by confounding factor, we observed that elderly patients (≥60 years) with the LINC00673 rs9914618 A allele had an increased risk of developing HCC under a codominant model (p = 0.025) and dominant model (p = 0.047). Moreover, elderly patients carrying the GA + AA genotype of rs9914618 exhibited a higher risk of having lymph node metastasis compared to those who were homozygous for the major allele (p = 0.013). Genotype screening of rs9914618 in HCC cell lines showed that cells carrying the AA genotype expressed higher LINC00673 levels compared to the cells carrying the GG genotype. Further analyses of clinical datasets from the Cancer Genome Atlas (TCGA) showed that LINC00673 expressions were upregulated in HCC tissues compared to normal tissues, and were correlated with advanced clinical stages and poorer prognoses. In conclusions, our results suggested that the LINC00673 rs9914618 polymorphism may be a promising HCC biomarker, especially in elderly populations.  相似文献   

17.
We examined common variants in the fatty acid binding protein 4 gene (FABP4) and plasma levels of FABP4 in adults aged 65 and older from the Cardiovascular Health Study. We genotyped rs16909187, rs1054135, rs16909192, rs10808846, rs7018409, rs2290201, and rs6992708 and measured circulating FABP4 levels among 3190 European Americans and 660 African Americans. Among European Americans, the minor alleles of six single nucleotide polymorphisms (SNP) were associated with lower FABP4 levels (all p ≤ 0.01). Among African Americans, the SNP with the lowest minor allele frequency was associated with lower FABP4 levels (p = 0.015). The C-A haplotype of rs16909192 and rs2290201 was associated with lower FABP4 levels in both European Americans (frequency = 16 %; p = 0.001) and African Americans (frequency = 8 %; p = 0.04). The haplotype combined a SNP in the first intron with one in the 3′untranslated region. However, the alleles associated with lower FABP4 levels were associated with higher fasting glucose in meta-analyses from the MAGIC consortium. These results demonstrate associations of common SNP and haplotypes in the FABP4 gene with lower plasma FABP4 but higher fasting glucose levels.  相似文献   

18.
The influence of PVT1 and MALAT1 variants on colorectal cancer (CRC) susceptibility and their impact on PVT1/miRNA-186/epithelial-mesenchymal transition (EMT) and MALAT1/miRNA-101/EMT axes in CRC are unknown. We investigated the influence of PVT1 rs13255292 and MALAT1 rs3200401 on the risk of CRC and adenomatous polyps (AP), their impact on the long noncoding RNAs PVT1 and MALAT1 expression and their target miRNA-186, miRNA-101/E-cadherin pathways, along with their potential as early CRC biomarkers. Overall, 280 individuals were recruited: 140 patients with CRC, 40 patients with AP, and 100 healthy volunteers. Genotyping and serum expression profiles were assessed using qPCR. The EMT biomarker, E-cadherin, was measured by ELISA. rs3200401 was associated with increased CRC risk, whereas rs13255292 was protective. Serum PVT1 and MALAT1 were upregulated in CRC and AP patients versus healthy controls, whereas, miRNA-186, miRNA-101 and E-cadherin were downregulated in CRC versus non-CRC groups. MALAT1 showed superior diagnostic potential for CRC and predicted CRC risk among non-CRC groups in the multivariate logistic analysis. PVT1, MALAT1, miRNA-186 and miRNA-101 levels were correlated with E-cadherin, tumor stage, lymph node and distant metastasis. E-cadherin was lost in metastatic vs. non-metastatic CRC. rs3200401CC genotype carriers showed higher E-cadherin levels than CC + CT carriers. rs3200401 was correlated with lymph node status. For the first time, rs13255292 and rs3200401 are potential genetic CRC predisposition markers, with rs3200401 possibly impacting the EMT process. Serum PVT1, MALAT1, miRNA-186 and miRNA-101 are novel non-invasive diagnostic biomarkers that could improve the clinical outcome of CRC.  相似文献   

19.
A substantial proportion of subjects with autosomal recessive retinitis pigmentosa (arRP) or Usher syndrome type II (USH2) lacks a genetic diagnosis due to incomplete USH2A screening in the early days of genetic testing. These cases lack eligibility for optimal genetic counseling and future therapy. USH2A defects are the most frequent cause of USH2 and are also causative in individuals with arRP. Therefore, USH2A is an important target for genetic screening. The aim of this study was to assess unscreened or incompletely screened and unexplained USH2 and arRP cases for (likely) pathogenic USH2A variants. Molecular inversion probe (MIP)-based sequencing was performed for the USH2A exons and their flanking regions, as well as published deep-intronic variants. This was done to identify single nucleotide variants (SNVs) and copy number variants (CNVs) in 29 unscreened or partially pre-screened USH2 and 11 partially pre-screened arRP subjects. In 29 out of these 40 cases, two (likely) pathogenic variants were successfully identified. Four of the identified SNVs and one CNV were novel. One previously identified synonymous variant was demonstrated to affect pre-mRNA splicing. In conclusion, genetic diagnoses were obtained for a majority of cases, which confirms that MIP-based sequencing is an effective screening tool for USH2A. Seven unexplained cases were selected for future analysis with whole genome sequencing.  相似文献   

20.
PCSK9 is a candidate locus for low-density lipoprotein cholesterol (LDL-C) levels. The cause–effect relationship between LDL-C levels and diabetes mellitus (DM) has been suggested to be mechanism-specific. To identify the role of PCSK9 and genome-wide association study (GWAS)-significant variants in LDL-C levels and the risk of DM by using Mendelian randomization (MR) analysis, a total of 75,441 Taiwan Biobank (TWB) participants was enrolled for a GWAS to determine common and rare PCSK9 variants and their associations with LDL-C levels. MR studies were also conducted to determine the association of PCSK9 variants and LDL-C GWAS-associated variants with DM. A regional plot association study with conditional analysis of the PCSK9 locus revealed that PCSK9 rs10788994, rs557211, rs565436, and rs505151 exhibited genome-wide significant associations with serum LDL-C levels. Imputation data revealed that three rare nonsynonymous mutations—namely, rs151193009, rs768846693, and rs757143429—exhibited genome-wide significant association with LDL-C levels. A stepwise regression analysis indicated that seven variants exhibited independent associations with LDL-C levels. On the basis of two-stage least squares regression (2SLS), MR analyses conducted using weighted genetic risk scores (WGRSs) of seven PCSK9 variants or WGRSs of 41 LDL-C GWAS-significant variants revealed significant association with prevalent DM (p = 0.0098 and 5.02 × 10−7, respectively), which became nonsignificant after adjustment for LDL-C levels. A sensitivity analysis indicated no violation of the exclusion restriction assumption regarding the influence of LDL-C-level-determining genotypes on the risk of DM. Common and rare PCSK9 variants are independently associated with LDL-C levels in the Taiwanese population. The results of MR analyses executed using genetic instruments based on WGRSs derived from PCSK9 variants or LDL-C GWAS-associated variants demonstrate an inverse association between LDL-C levels and DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号