首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence suggests that PKA activity in the nucleus accumbens (NAc) plays an essential role in reward-related learning. In this study, we investigated whether PKA is differentially involved in the expression of learning produced by either natural reinforcers or psychostimulants. For that purpose, we inhibited PKA through a bilateral infusion of Rp-cAMPS, a specific PKA inhibitor, directly into the NAc. The effects of PKA inhibition in the NAc on the expression of concurrent conditioned place preference (CPP) for cocaine (drug) and social interaction (natural reward) in rats were evaluated. We found that PKA inhibition increased the expression of cocaine preference. This effect was not due to altered stress levels or decreased social reward. PKA inhibition did not affect the expression of natural reward as intra-NAc Rp-cAMPS infusion did not affect expression of social preference. When rats were trained to express cocaine or social interaction CPP and tested for eventual persisting preference 7 and 14 days after CPP expression, cocaine preference was persistent, but social preference was abolished after the first test. These results suggest that PKA in the NAc is involved in drug reward learning that might lead to addiction and that only drug, but not natural, reward is persistent.  相似文献   

2.
Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum. Dopamine D2 receptor antagonists and dopamine transporter (DAT) inhibitors protect against neurotoxicity of the drug by decreasing intracellular dopamine content and, consequently, dopamine autoxidation and production of reactive oxygen species. In vitro, amphetamines regulate D2 receptor and DAT functions via regulation of their intracellular trafficking. No data exists on axonal transport of both proteins and there is limited data on their interactions in vivo. The aim of the present investigation was to examine synaptosomal levels of presynaptic D2 autoreceptor and DAT after two different regimens of METH and to determine whether METH affects the D2 autoreceptor-DAT interaction in the rat striatum. We found that, as compared to saline controls, administration of single high-dose METH decreased D2 autoreceptor immunoreactivity and increased DAT immunoreactivity in rat striatal synaptosomes whereas binge high-dose METH increased immunoreactivity of D2 autoreceptor and had no effect on DAT immunoreactivity. Single METH had no effect on D2 autoreceptor-DAT interaction whereas binge METH increased the interaction between the two proteins in the striatum. Our results suggest that METH can affect axonal transport of both the D2 autoreceptor and DAT in an interaction-dependent and -independent manner.  相似文献   

3.
RNA interference holds great potential for cancer therapeutics and its success is highly dependent on an effective delivery system. As most preclinical drug screening in vitro was conducted in flat monolayer cell cultures, development of more physiologically relevant models is needed to enhance testing reliability and effectiveness. Here, the aim was to develop 3D cell spheroids and evaluate the efficiency of NP1, a novel cell penetrating peptide, CPP (STR-H16R8), developed by our group to assist siRNA delivery. NP1 elicited significant cellular uptake of siRNA and promoted great siRNA knockdown efficiency of Bcl-2 and VEGF mRNA in 3D spheroids (53% and 51%, respectively), induced marked apoptosis after silencing HIF mRNA, and 3D spheroids displayed apoptosis resistance compared to 2D cells. Taken together, 3D spheroids provide an improved model for testing siRNA delivery and NP1 has proved to be a powerful in vitro transfection reagent.  相似文献   

4.
Repeated administration of methylamphetamine (MA) induces MA addiction, which is featured by awfully unpleasant physical and emotional experiences after drug use is terminated. Neurophysiological studies show that the lateral hypothalamus (LH) is involved in reward development and addictive behaviors. Here, we show that repeated administration of MA activates the expression of c-Fos in LH neurons responding to conditioned place preference (CPP). Chemogenetic inhibition of the LH can disrupt the addiction behavior, demonstrating that the LH plays an important role in MA-induced reward processing. Critically, MA remodels the neurons of LH synaptic plasticity, increases intracellular calcium level, and enhances spontaneous current and evoked potentials of neurons compared to the saline group. Furthermore, overexpression of the potassium voltage-gated channel subfamily Q member 3 (Kcnq3) expression can reverse the CPP score and alleviate the occurrence of addictive behaviors. Together, these results unravel a new neurobiological mechanism underlying the MA-induced addiction in the lateral hypothalamus, which could pave the way toward new and effective interventions for this addiction disease.  相似文献   

5.
A series of biodegradable amphiphilic A‐B‐A type triblock copolymers P(BLA‐PEG‐BLA), composed of hydrophilic poly(ethylene glycol) (PEG) as a middle block component (B) and hydrophobic poly(β‐benzyl‐L ‐aspartate) as outer polypeptide block components (A), were synthesized by copolymerization of β‐benzyl‐L ‐aspartate N‐carboxy anhydride (BLA‐NCA) and the diaminated PEG with the primary amino groups capped at both ends. These P(BLA‐PEG‐BLA) copolymers were characterized by 1H‐NMR, DSC, and GPC. The triblock copolymers were used to prepare three kinds of drug delivery systems including Norfloxacin (INN)‐incorporated P(BLA‐PEG‐BLA) microparticles and tablets. The morphologies of the microparticles were characterized by SEM. The in vitro release properties of the microparticles and tablets in PBS were also evaluated. A mathematical model, which incorporates a linear first‐order dissolution term and the transient Fickian diffusion equation, was developed to account for the kinetics of drug release from the INN‐incorporated P(BLA‐PEG‐BLA) microparticles. The results indicated that the overall release process was well controlled by both drug dissolution and diffusion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3869–3873, 2004  相似文献   

6.
Methamphetamine (METH) is a highly addictive drug that induces irreversible damage to neuronal cells and pathological malfunction in the brain. Aromadendrin, isolated from the flowers of Chionanthus retusus, has been shown to have anti-inflammatory or anti-tumor activity. Nevertheless, it has been reported that METH exacerbates neurotoxicity by inducing endoplasmic reticulum (ER) stress via the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in neuronal cells. There is little evidence that aromadendrin protects cells from neurotoxicity induced by METH. In this study, we found that aromadendrin partially suppressed the METH-induced cell death in SH-SY5y cells without causing cytotoxicity. Aromadendrin regulated METH-induced ER stress by preserving the phosphorylation of the PI3K/Akt/mTOR signaling pathway in METH-exposed SH-SY5y cells. In addition, aromadendrin mitigated METH-induced autophagic and the apoptotic pathways in METH-exposed SH-SY5y cells. Mechanistic studies revealed that pre-treatment with aromadendrin restored the expression of anti-apoptotic proteins in METH-exposed conditions. The inhibitor assay confirmed that aromadendrin-mediated restoration of mTOR phosphorylation protected cells from autophagy and apoptosis in METH-exposed cells. Therefore, these findings suggest that aromadendrin relatively has a protective effect on SH-SY5y cells against autophagy and apoptosis induced by METH via regulation of ER stress and the PI3K/Akt/mTOR signaling pathway.  相似文献   

7.
Mephedrone, a synthetic cathinone, is widely abused by adolescents and young adults. The aim of this study was to determine: (i) whether prior mephedrone exposure would alter ethanol reward and (ii) whether age and matrix metalloproteinase-9 (MMP-9) are important in this regard. In our research, male Wistar rats at postnatal day 30 (PND30) received mephedrone at the dose of 10 mg/kg, i.p., 3 times a day for 7 days. To clarify the role of MMP-9 in the mephedrone effects, one mephedrone-treated group received minocycline, as an MMP-9 antagonist. Animals were then assigned to conditioned place preference (CPP) procedure at PND38 (adolescent) or at PND69 (adult). After the CPP test (PND48/79), expression of dopamine D1 receptors (D1R), Cav1.2 (a subtype of L-type calcium channels), and MMP-9 was quantified in the rat ventral striatum (vSTR). The influence of mephedrone administration on the N-methyl-D-aspartate glutamate receptors (NMDAR) subunits (GluN1, GluN2A, and GluN2B) was then assessed in the vSTR of adult rats (only). These results indicate that, in contrast with adolescent rats, adult rats with prior mephedrone administration appear to be more sensitive to the ethanol effect in the CPP test under the drug-free state. The mephedrone effect in adult rats was associated with upregulation of D1R, NMDAR/GluN2B, MMP-9, and Cav1.2 signaling. MMP-9 appears to contribute to these changes in proteins expression because minocycline pretreatment blocked mephedrone-evoked sensitivity to ethanol reward. Thus, our results suggest that prior mephedrone exposure differentially alters ethanol reward in adolescent and adult rats.  相似文献   

8.
黄礼娜  蔡进  吉民 《化工时刊》2009,23(6):57-61
在现有理论和实验基础上,以BP897和SB277011为代表,对D3受体部分激动剂和拮抗剂在治疗药物成瘾方面的作用进行对比分析,并列举最新D3R拮抗剂在治疗药物成瘾动物实验中的作用,说明D3R拮抗剂在治疗药物成瘾方面,相较于部分激动剂而言更具潜力。  相似文献   

9.
The dentate gyrus (DG), an important part of the hippocampus, plays a significant role in learning, memory, and emotional behavior. Factors potentially influencing normal development of neurons and glial cells in the DG during its maturation can exert long-lasting effects on brain functions. Early life stress may modify maturation of the DG and induce lifelong alterations in its structure and functioning, underlying brain pathologies in adults. In this paper, maturation of neurons and glial cells (microglia and astrocytes) and the effects of early life events on maturation processes in the DG have been comprehensively reviewed. Early postnatal interventions affecting the DG eventually result in an altered number of granule neurons in the DG, ectopic location of neurons and changes in adult neurogenesis. Adverse events in early life provoke proinflammatory changes in hippocampal glia at cellular and molecular levels immediately after stress exposure. Later, the cellular changes may disappear, though alterations in gene expression pattern persist. Additional stressful events later in life contribute to manifestation of glial changes and behavioral deficits. Alterations in the maturation of neuronal and glial cells induced by early life stress are interdependent and influence the development of neural nets, thus predisposing the brain to the development of cognitive and psychiatric disorders.  相似文献   

10.
There is huge scientific interest in the neuropeptide oxytocin (OXT) due to its putative capacity to modulate a wide spectrum of physiological and cognitive processes including motivation, learning, emotion, and the stress response. The present review seeks to increase the understanding of the role of OXT in an individual’s vulnerability or resilience with regard to developing a substance use disorder. It places specific attention on the role of social stress as a risk factor of addiction, and explores the hypothesis that OXT constitutes a homeostatic response to stress that buffers against its negative impact. For this purpose, the review summarizes preclinical and clinical literature regarding the effects of OXT in different stages of the addiction cycle. The current literature affirms that a well-functioning oxytocinergic system has protective effects such as the modulation of the initial response to drugs of abuse, the attenuation of the development of dependence, the blunting of drug reinstatement and a general anti-stress effect. However, this system is dysregulated if there is continuous drug use or chronic exposure to stress. In this context, OXT is emerging as a promising pharmacotherapy to restore its natural beneficial effects in the organism and to help rebalance the functions of the addicted brain.  相似文献   

11.
Changes in the molecular structure of synthetic cathinones has led to an increase in the number of novel emerging drugs in the illicit drug market at an unprecedented rate. Unfortunately, little is known about the neuropsychopharmacology of recently emerged halogen-substituted α-PVP derivatives. Thus, the aim of this study was to investigate the role of para- and meta-halogen (F-, Cl-, and Br-) substitutions on the in vitro, in silico, and in vivo effects of α-pyrrolidinopentiophenone (α-PVP) derivatives. HEK293 cells expressing the human dopamine or serotonin transporter (hDAT and hSERT) were used for the uptake inhibition and transporter affinity assays. Molecular docking was used to model the interaction mechanism against DAT. Swiss CD-1 mice were used for the horizontal locomotor activity, open field test, and conditioned place preference paradigm. All compounds demonstrated potent DA uptake inhibition and higher DAT selectivity than cocaine. Meta-substituted cathinones showed higher DAT/SERT ratios than their para- analogs, which correlates with an increased psychostimulant effect in vivo and with different meta- and para-in silico interactions at DAT. Moreover, all compounds induced rewarding and acute anxiogenic effects in mice. In conclusion, the present study demonstrates the role of meta- and para-halogen substitutions in the mechanism of action and provides the first evidence of the rewarding and anxiety-like properties of halogenated α-PVP derivatives.  相似文献   

12.
The basolateral amygdala (BLA) is one of the key brain areas involved in aversive learning, especially fear memory formation. Studies of aversive learning in the BLA have largely focused on neuronal function, while the role of BLA astrocytes in aversive learning remains largely unknown. In this study, we manipulated the BLA astrocytes by expressing the Gq-coupled receptor hM3q and discovered that astrocytic Gq modulation during fear conditioning promoted auditorily cued fear memory but did not affect less stressful memory tasks or induce anxiety-like behavior. Moreover, chemogenetic activation of BLA astrocytes during memory retrieval had no effect on fear memory expression. In addition, astrocytic Gq activation increased c-Fos expression in the BLA and the medial prefrontal cortex (mPFC) during fear conditioning, but not in the home cage. Combining these results with retrograde virus tracing, we found that the activity of mPFC-projecting BLA neurons showed significant enhancement after astrocytic Gq activation during fear conditioning. Electrophysiology recordings showed that activating astrocytic Gq in the BLA promoted spike-field coherence and phase locking percentage, not only within the BLA but also between the BLA and the mPFC. Finally, direct chemogenetic activation of mPFC-projecting BLA neurons during fear conditioning enhanced cued fear memory. Taken together, our data suggest that astrocytes in the BLA may contribute to aversive learning by modulating amygdala–mPFC communication.  相似文献   

13.
Cell-penetrating peptides (CPPs) are small peptide sequences used mainly as cellular delivery agents that are able to efficiently deliver cargo into cells. Some CPPs also demonstrate intrinsic anticancer properties. Previously, our group developed a new family of CPP2-thiazole conjugates that have been shown to effectively reduce the proliferation of different cancer cells. This work aimed to combine these CPP2-thiazole conjugates with paclitaxel (PTX) and 5-fluorouracil (5-FU) in PC-3 prostate and HT-29 colon cancer cells, respectively, to evaluate the cytotoxic effects of these combinations. We also combined these CPP2-thiazole conjugates with clotrimazole (CLZ), an antifungal agent that has been shown to decrease cancer cell proliferation. Cell viability was evaluated using MTT and SRB assays. Drug interaction was quantified using the Chou–Talalay method. We determined that CPP2 did not have significant activity in these cells and demonstrate that N-terminal modification of this peptide enhanced its anticancer activity in both cell lines. Our results also showed an uneven response between cell lines to the proposed combinations. PC-3 cells were more responsive to the combination of CPP2-thiazole conjugates with CLZ than PTX and were more sensitive to these combinations than HT-29 cells. In addition, the interaction of drugs resulted in more synergism in PC-3 cells. These results suggest that N-terminal modification of CPP2 results in the enhanced anticancer activity of the peptide and demonstrates the potential of CPPs as adjuvants in cancer therapy. These results also validate that CLZ has significant anticancer activity both alone and in combination and support the strategy of drug repurposing coupled to drug combination for prostate cancer therapy.  相似文献   

14.
A lack of effective treatment and sex-based disparities in psychostimulant addiction and overdose warrant further investigation into mechanisms underlying the abuse-related effects of amphetamine-like stimulants. Uptake-2 transporters such as organic cation transporter 3 (OCT3) and plasma membrane monoamine transporter (PMAT), lesser studied potential targets for the actions of stimulant drugs, are known to play a role in monoaminergic neurotransmission. Our goal was to examine the roles of OCT3 and PMAT in mediating amphetamine (1 mg/kg)-induced conditioned place preference (CPP) and sensitization to its locomotor stimulant effects, in males and females, using pharmacological, decynium-22 (D22; 0.1 mg/kg, a blocker of OCT3 and PMAT) and genetic (constitutive OCT3 and PMAT knockout (−/−) mice) approaches. Our results show that OCT3 is necessary for the development of CPP to amphetamine in males, whereas in females, PMAT is necessary for the ability of D22 to prevent the development of CPP to amphetamine. Both OCT3 and PMAT appear to be important for development of sensitization to the locomotor stimulant effect of amphetamine in females, and PMAT in males. Taken together, these findings support an important, sex-dependent role of OCT3 and PMAT in the rewarding and locomotor stimulant effects of amphetamine.  相似文献   

15.
The γ-aminobutyric acid type A receptor (GABAAR) plays a major role in fast inhibitory synaptic transmission and is highly regulated by the neuromodulator dopamine. In this aspect, most of the attention has been focused on the classical intracellular signaling cascades following dopamine G-protein-coupled receptor activation. Interestingly, the GABAAR and dopamine D5 receptor (D5R) have been shown to physically interact in the hippocampus, but whether a functional cross-talk occurs is still debated. In the present study, we use a combination of imaging and single nanoparticle tracking in live hippocampal neurons to provide evidence that GABAARs and D5Rs form dynamic surface clusters. Disrupting the GABAAR–D5R interaction with a competing peptide leads to an increase in the diffusion coefficient and the explored area of both receptors, and a drop in immobile synaptic GABAARs. By means of patch-clamp recordings, we show that this fast lateral redistribution of surface GABAARs correlates with a robust depression in the evoked GABAergic currents. Strikingly, it also shifts in time the expression of long-term potentiation at glutamatergic synapses. Together, our data both set the plasma membrane as the primary stage of a functional interplay between GABAAR and D5R, and uncover a non-canonical role in regulating synaptic transmission.  相似文献   

16.
Hypoxia, which is common during tumor progression, plays important roles in tumor biology. Failure in cell death in response to hypoxia contributes to progression and metastasis of tumors. On the one hand, the metabolic and oxidative stress following hypoxia could lead to cell death by triggering signal cascades, like LKB1/AMPK, PI3K/AKT/mTOR, and altering the levels of effective components, such as the Bcl-2 family, Atg and p62. On the other hand, hypoxia-induced autophagy can serve as a mechanism to turn over nutrients, so as to mitigate the adverse condition and then avoid cell death potentially. Due to the effective role of hypoxia, this review focuses on the crosstalk in cell death under hypoxia in tumor progression. Additionally, the illumination of cell death in hypoxia could shed light on the clinical applications of cell death targeted therapy.  相似文献   

17.
18.
Calcium pyrophosphate (CPP) deposition disease (CPPD) is a form of CPP crystal-induced arthritis. A high concentration of extracellular pyrophosphate (ePPi) in synovial fluid is positively correlated with the formation of CPP crystals, and ePPi can be upregulated by ankylosis human (ANKH) and ectonucleotide pyrophosphatase 1 (ENPP1) and downregulated by tissue non-specific alkaline phosphatase (TNAP). However, there is currently no drug that eliminates CPP crystals. We explored the effects of the histone deacetylase (HDAC) inhibitors (HDACis) trichostatin A (TSA) and vorinostat (SAHA) on CPP formation. Transforming growth factor (TGF)-β1-treated human primary cultured articular chondrocytes (HC-a cells) were used to increase ePPi and CPP formation, which were determined by pyrophosphate assay and CPP crystal staining assay, respectively. Artificial substrates thymidine 5′-monophosphate p-nitrophenyl ester (p-NpTMP) and p-nitrophenyl phosphate (p-NPP) were used to estimate ENPP1 and TNAP activities, respectively. The HDACis TSA and SAHA significantly reduced mRNA and protein expressions of ANKH and ENPP1 but increased TNAP expression in a dose-dependent manner in HC-a cells. Further results demonstrated that TSA and SAHA decreased ENPP1 activity, increased TNAP activity, and limited levels of ePPi and CPP. As expected, both TSA and SAHA significantly increased the acetylation of histones 3 and 4 but failed to block Smad-2 phosphorylation induced by TGF-β1. These results suggest that HDACis prevented the formation of CPP by regulating ANKH, ENPP1, and TNAP expressions and can possibly be developed as a potential drug to treat or prevent CPPD.  相似文献   

19.
Alcohol and nicotine are widely abused legal substances worldwide. Relapse to alcohol or tobacco seeking and consumption after abstinence is a major clinical challenge, and is often evoked by cue-induced craving. Therefore, disruption of the memory for the cue–drug association is expected to suppress relapse. Memories have been postulated to become labile shortly after their retrieval, during a “memory reconsolidation” process. Interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we surveyed the growing body of studies in animal models and in humans assessing the effectiveness of pharmacological or behavioral manipulations in reducing relapse by interfering with the reconsolidation of alcohol and nicotine/tobacco memories. Our review points to the potential of targeting the reconsolidation of these memories as a strategy to suppress relapse to alcohol drinking and tobacco smoking. However, we discuss several critical limitations and boundary conditions, which should be considered to improve the consistency and replicability in the field, and for development of an efficient reconsolidation-based relapse-prevention therapy.  相似文献   

20.
Dopamine, which is synthesized in the kidney, independent of renal nerves, plays an important role in the regulation of fluid and electrolyte balance and systemic blood pressure. Lack of any of the five dopamine receptor subtypes (D1R, D2R, D3R, D4R, and D5R) results in hypertension. D1R, D2R, and D5R have been reported to be important in the maintenance of a normal redox balance. In the kidney, the antioxidant effects of these receptors are caused by direct and indirect inhibition of pro-oxidant enzymes, specifically, nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase, and stimulation of anti-oxidant enzymes, which can also indirectly inhibit NADPH oxidase activity. Thus, stimulation of the D2R increases the expression of endogenous anti-oxidants, such as Parkinson protein 7 (PARK7 or DJ-1), paraoxonase 2 (PON2), and heme oxygenase 2 (HO-2), all of which can inhibit NADPH oxidase activity. The D5R decreases NADPH oxidase activity, via the inhibition of phospholipase D2, and increases the expression of HO-1, another antioxidant. D1R inhibits NADPH oxidase activity via protein kinase A and protein kinase C cross-talk. In this review, we provide an overview of the protective roles of a specific dopamine receptor subtype on renal oxidative stress, the different mechanisms involved in this effect, and the role of oxidative stress and impairment of dopamine receptor function in the hypertension that arises from the genetic ablation of a specific dopamine receptor gene in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号