首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steroid hormones represent an amazing class of molecules that play pleiotropic roles in vertebrates. In mammals, during postnatal development, sex steroids significantly influence the organization of sexually dimorphic neural circuits underlying behaviors critical for survival, such as the reproductive one. During the last decades, multiple studies have shown that many cortical and subcortical brain regions undergo sex steroid-dependent structural organization around puberty, a critical stage of life characterized by high sensitivity to external stimuli and a profound structural and functional remodeling of the organism. Here, we first give an overview of current data on how sex steroids shape the peripubertal brain by regulating neuroplasticity mechanisms. Then, we focus on adult neurogenesis, a striking form of persistent structural plasticity involved in the control of social behaviors and regulated by a fine-tuned integration of external and internal cues. We discuss recent data supporting that the sex steroid-dependent peripubertal organization of neural circuits involves a sexually dimorphic set-up of adult neurogenesis that in turn could be relevant for sex-specific reproductive behaviors.  相似文献   

2.
Stress is defined as a state of threatened or perceived as threatened homeostasis. The well-tuned coordination of the stress response system is necessary for an organism to respond to external or internal stressors and re-establish homeostasis. Glucocorticoid hormones are the main effectors of stress response and aberrant glucocorticoid signaling has been associated with an increased risk for psychiatric and mood disorders, including schizophrenia, post-traumatic stress disorder and depression. Emerging evidence suggests that life-stress experiences can alter the epigenetic landscape and impact the function of genes involved in the regulation of stress response. More importantly, epigenetic changes induced by stressors persist over time, leading to increased susceptibility for a number of stress-related disorders. In this review, we discuss the role of glucocorticoids in the regulation of stress response, the mechanism through which stressful experiences can become biologically embedded through epigenetic alterations, and we underline potential associations between epigenetic changes and the development of stress-related disorders.  相似文献   

3.
Adaptation of organisms to stressors is coordinated by the hypothalamic-pituitary-adrenal axis (HPA), which involves glucocorticoids (GCs) and glucocorticoid receptors (GRs). Although the effects of GCs are well characterized, their impact on brain adaptation to hypoxia/ischemia is still understudied. The brain is not only the most susceptible to hypoxic injury, but also vulnerable to GC-induced damage, which makes studying the mechanisms of brain hypoxic tolerance and resistance to stress-related elevation of GCs of great importance. Cross-talk between the molecular mechanisms activated in neuronal cells by hypoxia and GCs provides a platform for developing the most effective and safe means for prevention and treatment of hypoxia-induced brain damage, including hypoxic pre- and post-conditioning. Taking into account that hypoxia- and GC-induced reprogramming significantly affects the development of organisms during embryogenesis, studies of the effects of prenatal and neonatal hypoxia on health in later life are of particular interest. This mini review discusses the accumulated data on the dynamics of the HPA activation in injurious and non-injurious hypoxia, the role of the brain GRs in these processes, interaction of GCs and hypoxia-inducible factor HIF-1, as well as cross-talk between GC and hypoxic signaling. It also identifies underdeveloped areas and suggests directions for further prospective studies.  相似文献   

4.
Environmental stress is ubiquitous in modern societies and can exert a profound and cumulative impact on cell function and health phenotypes. This impact is thought to be in large part mediated by the action of glucocorticoid stress hormones, primarily cortisol in humans. While the underlying molecular mechanisms are unclear, epigenetics—the chemical changes that regulate genomic function without altering the genetic code—has emerged as a key link between environmental exposures and phenotypic outcomes. The present study assessed genome-wide DNA (CpG) methylation, one of the key epigenetic mechanisms, at three timepoints during prolonged (51-day) exposure of cultured human fibroblasts to naturalistic cortisol levels, which can be reached in human tissues during in vivo stress. The findings support a spatiotemporal model of profound and widespread stress hormone-driven methylomic changes that emerge at selected CpG sites, are more likely to spread to nearby located CpGs, and quantitatively accrue at open sea, glucocorticoid receptor binding, and chromatin-accessible sites. Taken together, these findings provide novel insights into how prolonged stress may impact the epigenome, with potentially important implications for stress-related phenotypes.  相似文献   

5.
6.
Epinephrine is the most abundant catecholamine hormone, produced by the nervous system and adrenal glands. Endocrine disruption of epinephrine synthesis, secretion and signaling is less studied than steroid and thyroid hormones. Dichlorodiphenyltrichloroethane (DDT) is recognized as one of the most prominent environmental contaminants with a long half-life. It is a potent endocrine disrupter affecting sex steroid, mineralocorticoid, glucocorticoid and thyroid hormone production. Exposure to low doses of DDT is universal and begins in utero. Therefore, we studied adrenal medulla growth and function in male Wistar rats exposed to low doses of DDT during prenatal and postnatal development until puberty and adulthood, as well as rats exposed to DDT since the first day of postnatal development. All the exposed rats demonstrated lowered epinephrine blood levels, gradually reducing with age. DDT was found to inhibit the synthesis of tyrosine hydroxylase and affect the mitochondrial apparatus of epinephrine-producing cells during puberty and even after maturation. Low-dose exposure to DDT from birth resulted in more pronounced changes in adrenomedullary cells and a more profound decrease (up to 50%) in epinephrine secretion in adult rats. Prenatal onset of exposure demonstrated a mild effect on epinephrine-producing function (30% reduction), but was associated with lower rate of adrenal medulla growth during maturation and 25% smaller adrenal medullar size in adult rats. All subjects exposed to low doses of DDT failed to develop adaptive changes and restore proper epinephrine production. These results indicate a dysmorphogenetic effect of prenatal exposure and disruption of secretory function of adrenal chromaffin cells by postnatal exposure to DDT.  相似文献   

7.
Bone is a multi-skilled tissue, protecting major organs, regulating calcium phosphate balance and producing hormones. Its development during childhood determines height and stature as well as resistance against fracture in advanced age. Estrogens are key regulators of bone turnover in both females and males. These hormones play a major role in longitudinal and width growth throughout puberty as well as in the regulation of bone turnover. In women, estrogen deficiency is one of the major causes of postmenopausal osteoporosis. In this review, we will summarize the main clinical and experimental studies reporting the effects of estrogens not only in females but also in males, during different life stages. Effects of estrogens on bone involve either Estrogen Receptor (ER)α or ERβ depending on the type of bone (femur, vertebrae, tibia, mandible), the compartment (trabecular or cortical), cell types involved (osteoclasts, osteoblasts and osteocytes) and sex. Finally, we will discuss new ongoing strategies to increase the benefit/risk ratio of the hormonal treatment of menopause.  相似文献   

8.
Feces deposited by the breeding alpha pair on exposed substrates and/or zones may act as visual and olfactory marks associated with social dominance in wolves. The aim of this study was to determine if there was a correlation between marking behavior, sex hormone levels, and physiological stress in a wild population of Iberian wolves in Northwest Spain. The glucocorticoid and sex hormone levels were measured in feces collected as a function of exposure (conspicuous/inconspicuous), height (above ground level/at ground level), and strategic location in the habitat (at crossroads/off crossroads), as well as the frequency of re-marking. The feces, believed to serve as marking cues, had higher glucocorticoid levels (cortisol) and sex hormones (testosterone, progesterone, and estradiol). The results suggest that in Iberian wolves, the alpha pair is subject to higher social stress than subordinate individuals, and that the reproductive suppression of subordinates is not mediated by chronic glucocorticoid elevation.  相似文献   

9.
Glucocorticoids are steroid hormones with key roles in the regulation of many physiological systems including energy homeostasis and immunity. However, chronic glucocorticoid excess, highlighted in Cushing’s syndrome, is established as being associated with increased cardiovascular disease (CVD) risk. Atherosclerosis is the major cause of CVD, leading to complications including coronary artery disease, myocardial infarction and heart failure. While the associations between glucocorticoid excess and increased prevalence of these complications are well established, the mechanisms underlying the role of glucocorticoids in development of atheroma are unclear. This review aims to better understand the importance of glucocorticoids in atherosclerosis and to dissect their cell-specific effects on key processes (e.g., contractility, remodelling and lesion development). Clinical and pre-clinical studies have shown both athero-protective and pro-atherogenic responses to glucocorticoids, effects dependent upon their multifactorial actions. Evidence indicates regulation of glucocorticoid bioavailability at the vasculature is complex, with local delivery, pre-receptor metabolism, and receptor expression contributing to responses linked to vascular remodelling and inflammation. Further investigations are required to clarify the mechanisms through which endogenous, local glucocorticoid action and systemic glucocorticoid treatment promote/inhibit atherosclerosis. This will provide greater insights into the potential benefit of glucocorticoid targeted approaches in the treatment of cardiovascular disease.  相似文献   

10.
Many adrenocortical diseases are more prevalent in women than in men, but the reasons underlying this sex bias are still unknown. Recent studies involving gonadectomy and sex hormone replacement experiments in mice have shed some light onto the molecular basis of sexual dimorphism in the adrenal cortex. Indeed, it has been shown that gonadal hormones influence many aspects of adrenal physiology, ranging from stem cell-dependent tissue turnover to steroidogenesis and X-zone dynamics. This article reviews current knowledge on adrenal cortex sexual dimorphism and the potential mechanisms underlying sex hormone influence of adrenal homeostasis. Both topics are expected to contribute to personalized and novel therapeutic approaches in the future.  相似文献   

11.
Sex is a significant variable in the prevalence and incidence of neurological disorders. Sex differences exist in neurodegenerative disorders (NDs), where sex dimorphisms play important roles in the development and progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In the last few years, some sex specific biomarkers for the identification of NDs have been described and recent studies have suggested that microRNA (miRNA) could be included among these, as influenced by the hormonal and genetic background. Failing to consider the possible differences between males and females in miRNA evaluation could introduce a sex bias in studies by not considering some of these sex-related biomarkers. In this review, we recapitulate what is known about the sex-specific differences in peripheral miRNA levels in neurodegenerative diseases. Several studies have reported sex-linked disparities, and from the literature analysis miR-206 particularly has been shown to have a sex-specific involvement. Hopefully, in the near future, patient stratification will provide important additional clues in diagnosis, prognosis, and tailoring of the best therapeutic approaches for each patient. Sex-specific biomarkers, such as miRNAs, could represent a useful tool for characterizing subgroups of patients.  相似文献   

12.
13.
Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.  相似文献   

14.
To counteract oxidative stress and associated brain diseases, antioxidant systems rescue neuronal cells from oxidative stress by neutralizing reactive oxygen species and preserving gene regulation. It is necessary to understand the communication and interactions between brain cells, including neurons, astrocytes and microglia, to understand oxidative stress and antioxidant mechanisms. Here, the role of glia in the protection of neurons against oxidative injury and glia–neuron crosstalk to maintain antioxidant defense mechanisms and brain protection are reviewed. The first part of this review focuses on the role of glia in the morphological and physiological changes required for brain homeostasis under oxidative stress and antioxidant defense mechanisms. The second part focuses on the essential crosstalk between neurons and glia for redox balance in the brain for protection against oxidative stress.  相似文献   

15.
16.
This review addresses the molecular mechanisms of corticotropin-releasing factor (CRF) regulation in the hypothalamus under stress and stress resilience. CRF in the hypothalamus plays a central role in regulating the stress response. CRF stimulates adrenocorticotropic hormone (ACTH) release from the anterior pituitary. ACTH stimulates glucocorticoid secretion from the adrenal glands. Glucocorticoids are essential for stress coping, stress resilience, and homeostasis. The activated hypothalamic-pituitary-adrenal axis is suppressed by the negative feedback from glucocorticoids. Glucocorticoid-dependent repression of cAMP-stimulated Crf promoter activity is mediated by both the negative glucocorticoid response element and the serum response element. Conversely, the inducible cAMP-early repressor can suppress the stress response via inhibition of the cAMP-dependent Crf gene, as can the suppressor of cytokine signaling-3 in the hypothalamus. CRF receptor type 1 is mainly involved in a stress response, depression, anorexia, and seizure, while CRF receptor type 2 mediates “stress coping” mechanisms such as anxiolysis in the brain. Differential effects of FK506-binding immunophilins, FKBP4 and FKBP5, contribute to the efficiency of glucocorticoids under stress resilience. Together, a variety of factors contribute to stress resilience. All these factors would have the differential roles under stress resilience.  相似文献   

17.
Marchigian Sardinian alcohol-preferring (msP) rats serve as a unique model of heightened alcohol preference and anxiety disorders. Their innate enhanced stress and poor stress-coping strategies are driven by a genetic polymorphism of the corticotropin-releasing factor receptor 1 (CRF1) in brain areas involved in glucocorticoid signaling. The activation of glucocorticoid receptors (GRs) regulates the stress response, making GRs a candidate target to treat stress and anxiety. Here, we examined whether mifepristone, a GR antagonist known to reduce alcohol drinking in dependent rats, decreases innate symptoms of anxiety in msPs. Male and female msPs were compared to non-selected Wistar counterparts across three separate behavioral tests. We assessed anxiety-like behavior via the novelty-induced hypophagia (NIH) assay. Since sleep disturbances and hyperarousal are common features of stress-related disorders, we measured sleeping patterns using the comprehensive lab monitoring system (CLAMS) and stress sensitivity using acoustic startle measures. Rats received an acute administration of vehicle or mifepristone (60 mg/kg) 90 min prior to testing on NIH, acoustic startle response, and CLAMS. Our results revealed that both male and female msPs display greater anxiety-like behaviors as well as enhanced acoustic startle responses compared to Wistar counterparts. Male msPs also displayed reduced sleeping bout duration versus Wistars, and female msPs displayed greater acoustic startle responses versus male msPs. Importantly, the enhanced anxiety-like behavior and startle responses were not reduced by mifepristone. Together, these findings suggest that increased expression of stress-related behaviors in msPs are not solely mediated by acute activation of GRs.  相似文献   

18.
Dichlorodiphenyltrichloroethane (DDT) is the most widespread, persistent pollutant and endocrine disruptor on the planet. Although DDT has been found to block androgen receptors, the effects of its low-dose exposure in different periods of ontogeny on the male reproductive system remain unclear. We evaluate sex steroid hormone production in the pubertal period and after maturation in male Wistar rats exposed to low doses of o,p’-DDT, either during prenatal and postnatal development or postnatal development alone. Prenatally and postnatally exposed rats exhibit lower testosterone production and increased estradiol and estriol serum levels after maturation, associated with the delayed growth of gonads. Postnatally exposed rats demonstrate accelerated growth of gonads and higher testosterone production in the pubertal period. In contrast to the previous group, they do not present raised estradiol production. All of the exposed animals exhibit a reduced conversion of progesterone to 17OH-progesterone after sexual maturation, which indicates putative attenuation of sex steroid production. Thus, the study reveals age-dependent outcomes of low-dose exposure to DDT. Prenatal onset of exposure results in the later onset of androgen production and the enhanced conversion of androgens to estrogens after puberty, while postnatal exposure induces the earlier onset of androgen secretion.  相似文献   

19.
20.
Stress is the physical and psychological tension felt by an individual while adapting to difficult situations. Stress is known to alter the expression of stress hormones and cause neuroinflammation in the brain. In this study, miRNAs in serum-derived neuronal exosomes (nEVs) were analyzed to determine whether differentially expressed miRNAs could be used as biomarkers of acute stress. Specifically, acute severe stress was induced in Sprague-Dawley rats via electric foot-shock treatment. In this acute severe-stress model, time-dependent changes in the expression levels of stress hormones and neuroinflammation-related markers were analyzed. In addition, nEVs were isolated from the serum of control mice and stressed mice at various time points to determine when brain damage was most prominent; this was found to be 7 days after foot shock. Next-generation sequencing was performed to compare neuronal exosomal miRNA at day 7 with the neuronal exosomal miRNA of the control group. From this analysis, 13 upregulated and 11 downregulated miRNAs were detected. These results show that specific miRNAs are differentially expressed in nEVs from an acute severe-stress animal model. Thus, this study provides novel insights into potential stress-related biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号