首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knee osteoarthritis (OA) is a degenerative knee joint disease that results from the breakdown of joint cartilage and underlying bone, affecting about 3.3% of the world’s population. As OA is a multifactorial disease, the underlying pathological process is closely associated with genetic changes in articular cartilage and bone. Many studies have focused on the role of small noncoding RNAs in OA and identified numbers of microRNAs that play important roles in regulating bone and cartilage homeostasis. The connection between other types of small noncoding RNAs, especially tRNA-derived fragments and knee osteoarthritis is still elusive. The observation that there is limited information about small RNAs different than miRNAs in knee OA was very surprising to us, especially given the fact that tRNA fragments are known to participate in a plethora of human diseases and a portion of them are even more abundant than miRNAs. Inspired by these findings, in this review we have summarized the possible involvement of microRNAs and tRNA-derived fragments in the pathology of knee osteoarthritis.  相似文献   

2.
The effective and minimally invasive radiation biomarkers are valuable for exposure scenarios in nuclear accidents or space missions. Recent studies have opened the new sight of circulating small non-coding RNA (sncRNA) as radiation biomarkers. The tRNA-derived small RNA (tsRNA) is a new class of sncRNA. It is more abundant than other kinds of sncRNAs in extracellular vesicles or blood, presenting great potential as promising biomarkers. However, the circulating tsRNAs in response to ionizing radiation have not been reported. In this research, Kunming mice were total-body exposed to 0.05–2 Gy of carbon ions, protons, or X-rays, and the RNA sequencing was performed to profile the expression of sncRNAs in serum. After conditional screening and validation, we firstly identified 5 tsRNAs including 4 tRNA-related fragments (tRFs) and 1 tRNA half (tiRNA) which showed a significant level decrease after exposure to three kinds of radiations. Moreover, the radiation responses of these 5 serum tsRNAs were reproduced in other mouse strains, and the sequences of them could be detected in serum of humans. Furthermore, we developed multi-factor models based on tsRNA biomarkers to indicate the degree of radiation exposure with high sensitivity and specificity. These findings suggest that the circulating tsRNAs can serve as new minimally invasive biomarkers and can make a triage or dose assessment from blood sample collection within 4 h in exposure scenarios.  相似文献   

3.
It was thought until the 1990s that the eukaryotic translation machinery was unable to translate a circular RNA. However internal ribosome entry sites (IRESs) and m6A-induced ribosome engagement sites (MIRESs) were discovered, promoting 5′ end-independent translation initiation. Today a new family of so-called “noncoding” circular RNAs (circRNAs) has emerged, revealing the pivotal role of 5′ end-independent translation. CircRNAs have a strong impact on translational control via their sponge function, and form a new mRNA family as they are translated into proteins with pathophysiological roles. While there is no more doubt about translation of covalently closed circRNA, the linearity of canonical mRNA is only theoretical: it has been shown for more than thirty years that polysomes exhibit a circular form and mRNA functional circularization has been demonstrated in the 1990s by the interaction of initiation factor eIF4G with poly(A) binding protein. More recently, additional mechanisms of 3′–5′ interaction have been reported, including m6A modification. Functional circularization enhances translation via ribosome recycling and acceleration of the translation initiation rate. This update of covalently and noncovalently closed circular mRNA translation landscape shows that RNA with circular shape might be the rule for translation with an important impact on disease development and biotechnological applications.  相似文献   

4.
5.
6.
7.
tRNA-derived fragments participate in the regulation of many processes, such as gene silencing, splicing and translation in many organisms, ranging from bacteria to humans. We were interested to know how tRF abundance changes during the different stages of renal cell development. The research model used here consisted of the following human renal cells: hESCs, HEK-293T, HK-2 and A-489 kidney tumor cells, which, together, mimic the different stages of kidney development. The characteristics of the most abundant tRFs, tRFGly(CCC), tRFVal(AAC) and tRFArg(CCU), were presented. It was found that these parental tRNAs present in cells are the source of many tRFs, thus increasing the pool of potential regulatory RNAs. Indeed, a bioinformatic analysis showed the possibility that tRFGly(CCC) and tRRFVal(AAC) could regulate the activity of a range of kidney proteins. Moreover, the distribution of tRFs and the efficiency of their expression is similar in adult and embryonic stem cells. During the formation of tRFs, HK-2 cells resemble A-498 cancer cells more than other cells. Additionally, we postulate the involvement of Dicer nuclease in the formation of tRF-5b in all the analyzed tRNAs. To confirm this, 293T NoDice cells, which in the absence of Dicer activity do not generate tRF-5b, were used.  相似文献   

8.
Transfer RNA (tRNA) is an RNA molecule that carries amino acids to the ribosomes for protein synthesis. These tRNAs function at the peptidyl (P) and aminoacyl (A) binding sites of the ribosome during translation, with each codon being recognized by a specific tRNA. Due to this specificity, tRNA modification is essential for translational efficiency. Many enzymes have been implicated in the modification of bacterial tRNAs, and these enzymes may complex with one another or interact individually with the tRNA. Approximately, 100 tRNA modification enzymes have been identified with glucose-inhibited division (GidA) protein and MnmE being two of the enzymes studied. In Escherichia coli and Salmonella, GidA and MnmE bind together to form a functional complex responsible for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm5s2U34) of tRNAs. Studies have implicated this pathway in a major pathogenic regulatory mechanism as deletion of gidA and/or mnmE has attenuated several bacterial pathogens like Salmonella enterica serovar Typhimurium, Pseudomonas syringae, Aeromonas hydrophila, and many others. In this review, we summarize the potential role of the GidA/MnmE tRNA modification pathway in bacterial virulence, interactions with the host, and potential therapeutic strategies resulting from a greater understanding of this regulatory mechanism.  相似文献   

9.
Transfer RNAs (tRNAs) are fundamental molecules in cellular translation. In this study we have highlighted a fluorescence-based perceptive approach for tRNAs by using a quinoxaline small molecule. We have synthesised a water-soluble fluorescent pyrimido-quinoxaline-fused heterocycle containing a mandatory piperazine tail ( DS1 ) with a large Stokes shift (∼160 nm). The interaction between DS1 and tRNA results in significant fluorescence enhancement of the molecule with Kd∼5 μM and multiple binding sites. Our work reveals that the DS1 binding site overlaps with the specific Mg2+ ion binding site in the D loop of tRNA. As a proof-of-concept, the molecule inhibited Pb2+-induced cleavage of yeast tRNAPhe in the D loop. In competitive binding assays, the fluorescence of DS1 -tRNA complex is quenched by a known tRNA-binder, tobramycin. This indicates the displacement of DS1 and, indeed, a substantiation of specific binding at the site of tertiary interaction in the central region of tRNA. The ability of compound DS1 to bind tRNA with a higher affinity compared to DNA and single-stranded RNA offers a promising approach to developing tRNA-based biomarker diagnostics in the future.  相似文献   

10.
The mitochondrial genome of the nematode Romanomermis culicivorax encodes for miniaturized hairpin-like tRNA molecules that lack D- as well as T-arms, strongly deviating from the consensus cloverleaf. The single tRNA nucleotidyltransferase of this organism is fully active on armless tRNAs, while the human counterpart is not able to add a complete CCA-end. Transplanting single regions of the Romanomermis enzyme into the human counterpart, we identified a beta-turn element of the catalytic core that—when inserted into the human enzyme—confers full CCA-adding activity on armless tRNAs. This region, originally identified to position the 3′-end of the tRNA primer in the catalytic core, dramatically increases the enzyme’s substrate affinity. While conventional tRNA substrates bind to the enzyme by interactions with the T-arm, this is not possible in the case of armless tRNAs, and the strong contribution of the beta-turn compensates for an otherwise too weak interaction required for the addition of a complete CCA-terminus. This compensation demonstrates the remarkable evolutionary plasticity of the catalytic core elements of this enzyme to adapt to unconventional tRNA substrates.  相似文献   

11.
Methylation is an essential epigenetic modification mainly catalysed by S-Adenosyl methionine-dependent methyltransferases (MTases). Several MTases require a cofactor for their metabolic stability and enzymatic activity. TRMT112 is a small evolutionary conserved protein that acts as a co-factor and activator for different MTases involved in rRNA, tRNA and protein methylation. Using a SILAC screen, we pulled down seven methyltransferases—N6AMT1, WBSCR22, METTL5, ALKBH8, THUMPD2, THUMPD3 and TRMT11—as interaction partners of TRMT112. We showed that TRMT112 stabilises all seven MTases in cells. TRMT112 and MTases exhibit a strong mutual feedback loop when expressed together in cells. TRMT112 interacts with its partners in a similar way; however, single amino acid mutations on the surface of TRMT112 reveal several differences as well. In summary, mammalian TRMT112 can be considered as a central “hub” protein that regulates the activity of at least seven methyltransferases.  相似文献   

12.
Transplant glomerulopathy develops through multiple mechanisms, including donor-specific antibodies, T cells and innate immunity. This study investigates circulating small RNA profiles in serum samples of kidney transplant recipients with biopsy-proven transplant glomerulopathy. Among total small RNA population, miRNAs were the most abundant species in the serum of kidney transplant patients. In addition, fragments arising from mature tRNA and rRNA were detected. Most of the tRNA fragments were generated from 5′ ends of mature tRNA and mainly from two parental tRNAs: tRNA-Gly and tRNA-Glu. Moreover, transplant patients with transplant glomerulopathy displayed a novel tRNA fragments signature. Gene expression analysis from allograft tissues demonstrated changes in canonical pathways related to immune activation such as iCos-iCosL signaling pathway in T helper cells, Th1 and Th2 activation pathway, and dendritic cell maturation. mRNA targets of down-regulated miRNAs such as miR-1224-5p, miR-4508, miR-320, miR-378a from serum were globally upregulated in tissue. Integration of serum miRNA profiles with tissue gene expression showed that changes in serum miRNAs support the role of T-cell mediated mechanisms in ongoing allograft injury.  相似文献   

13.
14.
Ribonucleic acid (RNA) is central to many life processes and, to fulfill its function, it has a substantial chemical variety in its building blocks. Enzymatic thiolation of uridine introduces 4-thiouridine (s4U) into many bacterial transfer RNAs (tRNAs), which is used as a sensor for UV radiation. A similar modified nucleoside, 2-thiocytidine, was recently found to be sulfur-methylated especially in bacteria exposed to antibiotics and simple methylating reagents. Herein, we report the synthesis of 4-methylthiouridine (ms4U) and confirm its presence and additional formation under stress in Escherichia coli. We used the synthetic ms4U for isotope dilution mass spectrometry and compared its abundance to other reported tRNA damage products. In addition, we applied sophisticated stable-isotope pulse chase studies (NAIL-MS) and showed its AlkB-independent removal in vivo. Our findings reveal the complex nature of bacterial RNA damage repair.  相似文献   

15.
16.
Calcium homeostasis endoplasmic reticulum protein (CHERP) is colocalized with the inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum or perinuclear region, and has been involved in intracellular calcium signaling. Structurally, CHERP carries the nuclear localization signal and arginine/serine-dipeptide repeats, like domain, and interacts with the spliceosome. However, the exact function of CHERP in the nucleus remains unknown. Here, we showed that poly(A)+ RNAs accumulated in the nucleus of CHERP-depleted U2OS cells. Our global analysis revealed that CHERP regulated alternative mRNA splicing events by interaction with U2 small nuclear ribonucleoproteins (U2 snRNPs) and U2 snRNP-related proteins. Among the five alternative splicing patterns analyzed, intron retention was the most frequently observed event. This was in accordance with the accumulation of poly(A)+ RNAs in the nucleus. Furthermore, intron retention and cassette exon choices were influenced by the strength of the 5′ or 3′ splice site, the branch point site, GC content, and intron length. In addition, CHERP depletion induced anomalies in the cell cycle progression into the M phase, and abnormal cell division. These results suggested that CHERP is involved in the regulation of alternative splicing.  相似文献   

17.
The 5‐substituted 2‐thiouridines (R5S2Us) present in the first (wobble) position of the anticodon of transfer RNAs (tRNAs) contribute to accuracy in reading mRNA codons and tuning protein synthesis. Previously, we showed that, under oxidative stress conditions in vitro, R5S2Us were sensitive to hydrogen peroxide (H2O2) and that their oxidative desulfuration produced 5‐substituted uridines (R5Us) and 4‐pyrimidinone nucleosides (R5H2Us) at a ratio that depended on the pH and an R5 substituent. Here, we demonstrate that the desulfuration of 2‐thiouridines, either alone or within an RNA/tRNA chain, is catalyzed by cytochrome c (cyt c). Its kinetics are similar to those of Fenton‐type catalytic 2‐thiouridine (S2U) desulfuration. Cyt c/H2O2‐ and FeII‐mediated reactions deliver predominantly 4‐pyrimidinone nucleoside (H2U)‐type products. The pathway of the cyt c/H2O2‐peroxidase‐mediated S2U→H2U transformation through uridine sulfenic (U‐SOH), sulfinic (U‐SO2H), and sulfonic (U‐SO3H) intermediates is confirmed by LC–MS. The cyt c/H2O2‐mediated oxidative damage of S2U‐tRNA may have biological relevance through alteration of the cellular functions of transfer RNA.  相似文献   

18.
Over a thousand nucleus-encoded mitochondrial proteins are imported from the cytoplasm; however, mitochondrial (mt) DNA encodes for a small number of critical proteins and the entire suite of mt:tRNAs responsible for translating these proteins. Mitochondrial RNase P (mtRNase P) is a three-protein complex responsible for cleaving and processing the 5′-end of mt:tRNAs. Mutations in any of the three proteins can cause mitochondrial disease, as well as mutations in mitochondrial DNA. Great strides have been made in understanding the enzymology of mtRNase P; however, how the loss of each protein causes mitochondrial dysfunction and abnormal mt:tRNA processing in vivo has not been examined in detail. Here, we used Drosophila genetics to selectively remove each member of the complex in order to assess their specific contributions to mt:tRNA cleavage. Using this powerful model, we find differential effects on cleavage depending on which complex member is lost and which mt:tRNA is being processed. These data revealed in vivo subtleties of mtRNase P function that could improve understanding of human diseases.  相似文献   

19.
20.
The global rise in type 2 diabetes results from a combination of genetic predisposition with environmental assaults that negatively affect insulin action in peripheral tissues and impair pancreatic β-cell function and survival. Nongenetic heritability of metabolic traits may be an important contributor to the diabetes epidemic. Transfer RNAs (tRNAs) are noncoding RNA molecules that play a crucial role in protein synthesis. tRNAs also have noncanonical functions through which they control a variety of biological processes. Genetic and environmental effects on tRNAs have emerged as novel contributors to the pathogenesis of diabetes. Indeed, altered tRNA aminoacylation, modification, and fragmentation are associated with β-cell failure, obesity, and insulin resistance. Moreover, diet-induced tRNA fragments have been linked with intergenerational inheritance of metabolic traits. Here, we provide a comprehensive review of how perturbations in tRNA biology play a role in the pathogenesis of monogenic and type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号