首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide-binding site–leucine-rich repeat (NBS–LRR) gene family is the largest group of plant disease resistance (R) genes widespread in response to viruses, bacteria, and fungi usually involved in effector triggered immunity (ETI). Forty members of the Chinese cabbage CC type NBS–LRR family were investigated in this study. Gene and protein characteristics, such as distributed locations on chromosomes and gene structures, were explored through comprehensive analysis. CC–NBS–LRR proteins were classified according to their conserved domains, and the phylogenetic relationships of CC–NBS–LRR proteins in Brassica rapa, Arabidopsis thaliana, and Oryza sativa were compared. Moreover, the roles of BrCC–NBS–LRR genes involved in pathogenesis-related defense were studied and analyzed. First, the expression profiles of BrCC–NBS–LRR genes were detected by inoculating with downy mildew and black rot pathogens. Second, sensitive and resistant Chinese cabbage inbred lines were screened by downy mildew and black rot. Finally, the differential expression levels of BrCC–NBS–LRR genes were monitored at 0, 1, 3, 6, 12 and 24 h for short and 0, 3, 5, 7, 10 and 14 days for long inoculation time. Our study provides information on BrCC–NBS–LRR genes for the investigation of the functions and mechanisms of CC-NBS-LRR genes in Chinese cabbage.  相似文献   

2.
Polycomb group (PcG) proteins, which are important epigenetic regulators, play essential roles in the regulatory networks involved in plant growth, development, and environmental stress responses. Currently, as far as we know, no comprehensive and systematic study has been carried out on the PcG family in Medicago truncatula. In the present study, we identified 64 PcG genes with distinct gene structures from the M. truncatula genome. All of the PcG genes were distributed unevenly over eight chromosomes, of which 26 genes underwent gene duplication. The prediction of protein interaction network indicated that 34 M. truncatula PcG proteins exhibited protein–protein interactions, and MtMSI1;4 and MtVRN2 had the largest number of protein–protein interactions. Based on phylogenetic analysis, we divided 375 PcG proteins from 27 species into three groups and nine subgroups. Group I and Group III were composed of five components from the PRC1 complex, and Group II was composed of four components from the PRC2 complex. Additionally, we found that seven PcG proteins in M. truncatula were closely related to the corresponding proteins of Cicer arietinum. Syntenic analysis revealed that PcG proteins had evolved more conservatively in dicots than in monocots. M. truncatula had the most collinearity relationships with Glycine max (36 genes), while collinearity with three monocots was rare (eight genes). The analysis of various types of expression data suggested that PcG genes were involved in the regulation and response process of M. truncatula in multiple developmental stages, in different tissues, and for various environmental stimuli. Meanwhile, many differentially expressed genes (DEGs) were identified in the RNA-seq data, which had potential research value in further studies on gene function verification. These findings provide novel and detailed information on the M. truncatula PcG family, and in the future it would be helpful to carry out related research on the PcG family in other legumes.  相似文献   

3.
4.
5.
6.
7.
Malate dehydrogenase, which facilitates the reversible conversion of malate to oxaloacetate, is essential for energy balance, plant growth, and cold and salt tolerance. However, the genome-wide study of the MDH family has not yet been carried out in tomato (Solanum lycopersicum L.). In this study, 12 MDH genes were identified from the S. lycopersicum genome and renamed according to their chromosomal location. The tomato MDH genes were split into five groups based on phylogenetic analysis and the genes that clustered together showed similar lengths, and structures, and conserved motifs in the encoded proteins. From the 12 tomato MDH genes on the chromosomes, three pairs of segmental duplication events involving four genes were found. Each pair of genes had a Ka/Ks ratio < 1, indicating that the MDH gene family of tomato was purified during evolution. Gene expression analysis exhibited that tomato MDHs were differentially expressed in different tissues, at various stages of fruit development, and differentially regulated in response to abiotic stresses. Molecular docking of four highly expressed MDHs revealed their substrate and co-factor specificity in the reversible conversion process of malate to oxaloacetate. Further, co-localization of tomato MDH genes with quantitative trait loci (QTL) of salt stress-related phenotypes revealed their broader functions in salt stress tolerance. This study lays the foundation for functional analysis of MDH genes and genetic improvement in tomato.  相似文献   

8.
Members of the chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. The metabolites play important roles in protecting land plants against various environmental stresses during the evolutionary process. Our research was conducted on comprehensive investigation of CHS genes in maize (Zea mays L.), including their phylogenetic relationships, gene structures, chromosomal locations and expression analysis. Fourteen CHS genes (ZmCHS01–14) were identified in the genome of maize, representing one of the largest numbers of CHS family members identified in one organism to date. The gene family was classified into four major classes (classes I–IV) based on their phylogenetic relationships. Most of them contained two exons and one intron. The 14 genes were unevenly located on six chromosomes. Two segmental duplication events were identified, which might contribute to the expansion of the maize CHS gene family to some extent. In addition, quantitative real-time PCR and microarray data analyses suggested that ZmCHS genes exhibited various expression patterns, indicating functional diversification of the ZmCHS genes. Our results will contribute to future studies of the complexity of the CHS gene family in maize and provide valuable information for the systematic analysis of the functions of the CHS gene family.  相似文献   

9.
Pesticide resistance in insects is an example of adaptive evolution occurring in pest species and is driven by the artificial introduction of pesticides. The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae), has evolved resistance to various insecticides. Understanding the genetic changes underpinning the resistance to pesticides is necessary for the implementation of pest control measures. We sequenced the genome of six resistant and six susceptible DBM individuals separately and inferred the genomic regions of greatest divergence between strains using FST and θπ. Among several genomic regions potentially related to insecticide resistance, CYP6B6-like was observed with significant divergence between the resistant and susceptible strains, with a missense mutation located near the substrate recognition site (SRS) and four SNPs in the promoter. To characterize the relative effects of directional selection via insecticide tolerance (‘strain’) as compared to acute exposure to insecticide (‘treatment’), four pairwise comparisons were carried out between libraries to determine the differentially expressed genes. Most resistance-related differentially expressed genes were identified from the comparison of the strains and enriched in pathways for exogenous detoxification including cytochrome P450 and the ABC transporter. Further confirmation came from the weighted gene co-expression network analysis, which indicated that genes in the significant module associated with chlorantraniliprole resistance were enriched in pathways for exogenous detoxification, and that CYP6B6-like represented a hub gene in the “darkred” module. Furthermore, RNAi knock-down of CYP6B6-like increases P. xylostella sensitivity to chlorantraniliprole. Our study thus provides a genetic foundation underlying selection for pesticide resistance and plausible mechanisms to explain fast evolved adaptation through genomic divergence and altered gene expression in insects.  相似文献   

10.
11.
The enzymes in the chalcone synthase family, also known as type-III polyketide synthases (PKSs), play important roles in the biosynthesis of various plant secondary metabolites and plant adaptation to environmental stresses. There have been few detailed reports regarding the gene and tissue expression profiles of the PKS (TaPKS) family members in wheat (Triticum aestivum L.). In this study, 81 candidate TaPKS genes were identified in the wheat genome, which were designated as TaPKS1–81. Phylogenetic analysis divided the TaPKS genes into two groups. TaPKS gene family expansion mainly occurred via tandem duplication and fragment duplication. In addition, we analyzed the physical and chemical properties, gene structures, and cis-acting elements of TaPKS gene family members. RNA-seq analysis showed that the expression of TaPKS genes was tissue-specific, and their expression levels differed before and after infection with Rhizoctonia cerealis. The expression levels of four TaPKS genes were also analyzed via qRT-PCR after treatment with methyl jasmonate, salicylic acid, abscisic acid, and ethylene. In the present study, we systematically identified and analyzed TaPKS gene family members in wheat, and our findings may facilitate the cloning of candidate genes associated with resistance to sheath blight in wheat.  相似文献   

12.
13.
14.
15.
16.
Rhizoctonia cerealis is the causal agent of sharp eyespot, a devastating disease of cereal crops including wheat. Several metalloproteases have been implicated in pathogenic virulence, but little is known about whole-genome metalloproteases in R. cerealis. In this study, a total of 116 metalloproteases-encoding genes were identified and characterized from the R. cerealis Rc207 genome. The gene expression profiles and phylogenetic relationship of 11 MEP36/fungalysin metalloproteases were examined during the fungal infection to wheat, and function of an upregulated secretory MEP36 named RcFL1 was validated. Of 11 MEP36 family metalloproteases, ten, except RcFL5, were predicted to be secreted proteins and nine encoding genes, but not RcFL5 and RcFL2, were expressed during the R. cerealis infection process. Phylogenetic analysis suggested that MEP36 metalloproteases in R. cerealis were closely related to those of Rhizoctonia solani but were remote to those of Bipolaris sorokiniana, Fusarium graminearum, F. pseudograminearum, and Pyricularia oryzae. Expression of RcFL1 was significantly upregulated during the infection process and induced plant cell death in wheat to promote the virulence of the pathogen. The MEP36 domain was necessary for the activities of RcFL1. Furthermore, RcFL1 could repress the expression of wheat genes coding for the chitin elicitor receptor kinase TaCERK1 and chitinases. These results suggest that this MEP36 metalloprotease RcFL1 may function as a virulence factor of R. cerealis through inhibiting host chitin-triggered immunity and chitinases. This study provides insights on pathogenic mechanisms of R. cerealis. RcFL1 likely is an important gene resource for improving resistance of wheat to R. cerealis through host-induced gene silencing strategy.  相似文献   

17.
18.
Previous studies have showed that the VQ motif–containing proteins in Arabidopsis thaliana and Oryza sativa play an important role in plant growth, development, and stress responses. However, little is known about the functions of the VQ genes in Brassica rapa (Chinese cabbage). In this study, we performed genome-wide identification, characterization, and expression analysis of the VQ genes in Chinese cabbage, especially under adverse environment. We identified 57 VQ genes and classified them into seven subgroups (I–VII), which were dispersedly distributed on chromosomes 1 to 10. The expansion of these genes mainly contributed to segmental and tandem duplication. Fifty-four VQ genes contained no introns and 50 VQ proteins were less than 300 amino acids in length. Quantitative real-time PCR showed that the VQ genes were differentially expressed in various tissues and during different abiotic stresses and plant hormone treatments. This study provides a comprehensive overview of Chinese cabbage VQ genes and will benefit the molecular breeding for resistance to stresses and disease, as well as further studies on the biological functions of the VQ proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号