首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对锂离子电池荷电状态(State of charge,SOC)估计精度低的问题,将Sage-Husa自适应算法与无迹卡尔曼滤波算法相结合,提出了一种可以对系统噪声进行不断更新和修正的自适应滤波新算法——SH-AUKF算法。在动态应力测试(Dynamic stress test,DST)工况下,采用无迹卡尔曼滤波(Unscented Kalman filter,UKF)、自适应无迹卡尔曼滤波(Adaptive unscented Kalman filter,AUKF)和SH-AUKF三种算法分别对SOC进行估计。结果表明,SH-AUKF算法估计SOC的误差最小,估计精度最高。与UKF相比,SH-AUKF算法的估计精度提高了45.4%;与AUKF相比,SH-AUKF算法的估计精度提高了14.3%。为了进一步降低噪声干扰的偶然性和突发性对SOC估计的影响,在估计过程中加入了蒙特卡洛采样方法。结果表明,融合了蒙特卡洛方法的SH-AUKF算法估计SOC时,估计误差区间仅为±1×10-3,有效提高了估计精度。  相似文献   

2.
杨凯  郭韵 《中外能源》2023,(7):90-95
锂离子电池在储能电站具有广阔的应用前景,它是储能电站的能量储存单元,精确地对锂离子电池荷电状态(SOC)进行预测是至关重要的,这可以在很大程度上提高电站系统的安全性能。通过多种等效电路模型的对比,选择二阶戴维南等效电路模型。选择三洋18650型动力锂电池作为电池充放电实验对象,设计测试实验步骤,得出电池的参考容量为3.4A·h,库伦效率为98.48%。对电池模型进行精确的参数辨识,通过曲线拟合得到UOC-SOC关系表达式。在仿真软件MATLAB/Simulink中运用扩展卡尔曼滤波法(EKF)对SOC进行仿真预测,通过SOC误差曲线对比可以发现,EKF估计器在起始状态略有误差,但1min内即快速收敛到SOC参考值附近,并且稳定状态下观测误差可维持在0.1%以内,能够满足工程实际应用的要求,证明了扩展卡尔曼滤波法对电池SOC预测的准确性。  相似文献   

3.
储能电池应用广泛,准确估计储能电池的荷电状态(state of charge,SOC)对提高电池健康状态有重要意义。铅炭电池作为一种高性能、低成本、高安全性的新型储能电池,在储能电站等场景受到广泛关注,而目前尚缺少铅炭电池SOC估计相关研究。本工作首先通过静流间歇滴定技术探究铅炭电池的荷电状态与开路电压关系,后通过混合脉冲功率性能试验得到铅炭电池的伏安特征数据,建立一阶Thevenin和一阶PNGV等效电路模型,利用基于代理模型和灵敏度分析的随机算法(surrogate optimization algorithm,SOA)对两种等效电路模型进行参数辨识。在此基础上,利用扩展卡尔曼滤波算法(extended Kalman filter,EKF)估计铅炭电池SOC,估算过程考虑噪声干扰。另外,在铅炭电池SOC初值未知的情况下,EKF算法不能准确估计铅炭电池SOC。因此,本工作提出采用自适应扩展卡尔曼滤波算法(adaptive extended Kalman filter,AEKF)对铅炭电池进行状态估计,来弥补EKF的不足。结果表明,在存在噪声且SOC初值未知的情况下,AEKF算法较EK...  相似文献   

4.
电池荷电状态(SOC)的准确估计是电池管理系统的关键问题,对电池的可靠性和安全性至关重要。由于多数情况下建立的电池模型精度不够高、电池系统的噪声统计是未知的或不准确的,这都会对锂离子电池系统的SOC估计会产生较大影响。本文采用二阶RC等效模型,可减小电池模型带来的误差;同时结合SageHusa滤波算法与无迹卡尔曼滤波(UKF)算法提出了一种新的SOC估计方法,基于噪声统计估计器的自适应无迹卡尔曼(AUKF)滤波算法,它可以对系统噪声进行实时修正以提高SOC的估算精度。并通过比较AUKF和UKF来验证SOC估计方法的准确性和有效性。实验结果表明,AUKF具有更高的SOC估计精度和自适应能力,在脉冲放电工况和动态工况下的估计精度均能保持在4.68%以内,可以有效地估计电池的SOC值。  相似文献   

5.
锂离子电池荷电状态(SOC)是电池管理系统(BMS)重要的参数之一,准确估计可以提高电池的使用寿命。然而在SOC估计过程中,会受到如测量设备的精度、噪声等外界因素的干扰,降低SOC的估计精度。为了提高SOC的估计精度,针对扩展卡尔曼滤波(EKF)算法易受噪声干扰,提出了以新息自适应扩展卡尔曼滤波来提高SOC的估计精度和稳定性。通过实验工况采集的数据,并与传统的EKF进行对比,估计误差可以控制在3%以内,验证了该模型的有效性。  相似文献   

6.
准确估计电池的荷电状态(SOC)和内部温度可以提高电池的性能和安全性。其中,电池模型的准确性和估计算法的适用性是关键。为了解决这两个问题,本文建立了圆柱形锂离子电池的多参数电热耦合模型。模型考虑电池SOC与温度变化之间的耦合关系,并且利用改进的熵热系数实验获得电池运行中产生的可逆热与不可逆热,通过可变遗忘因子最小二乘算法(VFFRLS)进行参数辨识,并对比独立的电模型与热模型的SOC与内部温度估计结果,验证了多参数电热耦合模型的准确性,结果证明所提模型相比较于单独的电热模型,估计精度提高了70%以上。最后,设计了一种基于奇异值分解的卡尔曼滤波(SVD-AUKF)算法来同时在线估计SOC和内部温度,并在改进的动态测试(DST)工况下对所提方法进行实验验证。结果表明:所提方法相较于扩展卡尔曼滤波(EKF)与无迹卡尔曼滤波(UKF)算法,能实现更高精度的SOC和温度估计,SOC与内部温度的平均误差分别是5%和0.2℃。  相似文献   

7.
锂离子荷电状态(State of charge,SOC)的精准估计是锂离子电池安全稳定运行的基础。传统的误差反向传播(Back propagation,BP)神经网络估计SOC的精度不高,而循环神经网络(Recurrent neural network,RNN)也容易陷入局部最优。针对这些问题,提出了自适应灾变遗传-循环神经网络(ACGA-RNN)联合算法,将自适应灾变遗传算法(Adaptive cataclysm genetic algorithm,ACGA)用于优化RNN的初始权值和阈值,提高了最优权值和阈值的全局搜索能力,从而有效提升锂离子电池SOC的估计精度。基于锂离子电池充放电的试验数据,将所提ACGA-RNN联合算法与RNN、GA-RNN算法分别用于锂离子电池的SOC估计。测试结果显示,相较于传统的RNN算法与GA-RNN算法,提出的ACGA-RNN联合算法获得了最佳的SOC估计精度,在DST工况下的估计平均绝对误差为1.74%,低于传统RNN和GA-RNN的估计精度3.68%和2.49%;另外,在45℃和0℃条件下,ACGA-RNN联合算法估计的平均绝对值误差分别为1.7...  相似文献   

8.
高精度的电池荷电状态估计是电动汽车电池管理系统的关键技术之一,其估计精度直接影响能量管理效率和汽车的续航里程。传统的滤波方法基于模型来估计电池SOC,但难以建立锂离子电池精确的数学模型。针对此问题,提出一种基于高斯过程回归的无迹卡尔曼滤波(UKF)锂离子电池SOC估计方法,使用高斯过程回归在有限的训练数据下建立等效电路模型的测量方程,在UKF和高斯过程回归之间建立关联。该模型能够充分联合利用现有实验数据和被预测实时状态数据,实现SOC估计。结果表明,与传统UKF相比,基于高斯过程回归的UKF算法具有较高精确性。  相似文献   

9.
实现对锂电池的荷电状态(state ofcharge,SOC)的准确估算对电动汽车电池管理系统具有重要意义。采用了二阶RC等效电路模型对电池进行精确建模,并分别利用离线参数辨识和带遗忘因子的递推最小二乘法的在线参数辨识方法对等效电路中的参数进行辨识,在确保模型精度满足要求后,利用扩展卡尔曼滤波(extended Kalman filter,EKF)算法来实现对电池SOC的准确估算。以美国联邦城市运行工况(federal urbandriving schedule,FUDS)和城市道路循环工况(urban dynamometerdrivingschedule,UDDS)进行仿真实验,并将实验中标准SOC值与离线辨识和在线辨识的SOC估计值进行对比分析。实验结果表明,在FUDS工况和UDDS工况下利用EKF算法估算SOC的平均误差都在2.5%以下,且在线参数辨识模型比离线参数辨识模型的平均误差分别降低了0.7%和0.9%。证明了EKF算法能实现对电池SOC的准确估算,且在线参数辨识方法下的电池模型具有更高的估算精度。  相似文献   

10.
电池荷电状态(SOC)作为电池管理系统(BMS)重要参数之一,准确估计SOC尤为重要。由于SOC在估计过程中常会受到电压、电流、充放电效率等众多因素的影响,因此很难准确估计SOC。为了提高SOC的估计精度,本工作提出了基于最小二乘支持向量机(LSSVM)机器学习的锂离子电池SOC估计模型。将该电池的电流、电压和温度作为模型的输入向量,SOC作为模型的输出向量,为了更好的获得LSSVM模型的参数,提出了利用自适应粒子群算法来进行参数优化,从而获得高精度SOC估计模型。通过恒流充放电实验采集的数据,并和未优化的粒子群优化的LSSVM、支持向量机(SVM)神经网络(NN)相比,所提模型的SOC估计精度误差为1.63%,验证了算法的有效性。  相似文献   

11.
锂电池的荷电状态(SOC)估算是电动汽车的系统管理与能量控制的重要参数。在SOC估算过程中,电池参数变化和老化问题会对结果造成很大影响。针对这一问题,在递推最小二乘法算法(RLS)辨识锂电池模型的参数的基础上更新电池容量,通过容积卡尔曼滤波(CKF)估算电池SOC,结合RLS和CKF实现在电池参数发生变化时准确估计SOC。以锂离子电池作为对象,应用所提出的算法实现锂电池的SOC在线估计,验证算法的准确性。  相似文献   

12.
本工作以钴酸电池为研究对象,针对锂电池在复杂工况下电流的剧烈变化导致荷电状态(SOC)无法有效预测的问题,建立了以精确参数为基础的双层无迹卡尔曼滤波算法(DLUKF)架构来更精准的估算SOC.首先,以脉冲功率特性实验数据获取二阶电路模型中电池开路电压与荷电状态的函数关系及特性曲线;其次,为增强模型辨识过程中的自适应学习能力并解决模型参数估计不准确的问题,应用递推最小二乘(RLS)算法在线准确地识别出模型中的未知变量;最后根据输入的变量信息,利用UKF算法相互嵌套形成的DLUKF算法实现对SOC的快速预测来解决单一的UKF算法在高阶非线性系统里估算不准确、精度低的问题.在UDDS工况和FUDS工况下对DLUKF算法和单一的UKF算法进行比较,通过对比分析两种算法估计出的SOC曲线、SOC误差曲线、端电压曲线及端电压误差曲线,表明DLUKF算法预测SOC的平均误差比UKF的低且预测精度更高.  相似文献   

13.
针对BP神经网络算法对电动汽车电池荷电状态(state of charge,SOC)估算的缺陷,提出一种基于萤火虫(firefly algorithm,FA)神经网络的SOC估算方法。以磷酸铁锂电池为测试对象,在ARBIN公司生产的EVTS电动车动力电池测试系统装置上进行测试,收集锂电池的各项性能参数。采用端电压和放电电流作为输入参数,SOC作为输出参数,建立FA-BP神经网络模型,用于估算锂离子电池充放电过程中的任一状态下的SOC。仿真实验结果表明,与现有的BP神经网络估算方法相比,基于FA-BP神经网络的锂电池SOC估算方法准确度高,具备很好的实用性。  相似文献   

14.
锂电池荷电状态(State of Charge, SOC)的精确估算是电池管理系统的必要基础,但锂电池受充放电倍率大小、老化速度等影响,存在强非线性、时变性等特性,SOC难以直接测量,只能结合海量电压和电流数据通过算法估算。本文提出一种自适应滑模观测器算法(Attitude Sliding Mode Observer, ASMO)对SOC估算,通过梯度下降的算法实时更新滑模观测器矩阵增益,以提高算法的精度和鲁棒性。在测试工况下将拓展卡尔曼滤波算法、滑模观测器算法与改进算法比较,结果表明,相较于传统拓展卡尔曼滤波算法和滑模观测器算法,改进过的算法具有更高的精度和鲁棒性,误差可控制在1%以内,验证改进算法有效性。  相似文献   

15.
SOC的准确估计对提高电池的动态性能和能量利用效率至关重要,估计过程中,模型参数不准确以及系统噪声的不确定性都会对结果产生较大影响。为减小模型参数辨识和系统噪声对SOC估计精度的影响,本文采用二阶RC等效电路模型,结合自适应扩展卡尔曼滤波算法(AEKF)进行锂电池的SOC估计。用带有遗忘因子的最小二乘法对模型参数进行在线辨识,以减小由参数辨识引起的估计误差,AEKF可以对系统和过程噪声进行修正,从而减小噪声对SOC估计的影响。最后分别用EKF和AEKF进行SOC估计并比较其误差,结果表明,AEKF联合最小二乘法参数在线辨识具有更高的精度和更好的适应性。  相似文献   

16.
为保证电池的正常运行,对电池的健康状态进行估计是非常重要的工作。针对传统建模方法估计精度差、参数众多计算复杂且耗时长等缺点,本工作构建了基于改进的萤火虫算法(firefly algorithm,FA)优化的反向传播(back propagation,BP)神经网络,对锂离子电池的健康状态(state of health,SOH)进行估计,利用萤火虫算法的全局优化能力和收敛速度快的特点对BP神经网络的权值和阈值进行优化,并引入莱维飞行(Levy flight),提升全局搜索能力,扩大搜索范围,提高了估计精度。采用NASA艾姆斯研究中心的锂离子电池数据集,对改进优化前后的算法进行训练与估计,对比各算法之间的优劣程度。结果表明,莱维飞行改进萤火虫算法优化反向传播神经网络(LFFA-BP)算法相比于BP神经网络算法与萤火虫算法优化反向传播神经网络(FA-BP)算法,决定系数更高,误差波动范围更小,具有较高的估计精度。  相似文献   

17.
精确的锂离子电池荷电状态(state of charge,SOC)估计对于电池管理系统至关重要.模型参数辨识是SOC估计的前提,也是影响其估计精度的关键因素.为了有效避免噪声对参数辨识的影响,采用偏差补偿递推最小二乘法(BCRLS)进行在线参数辨识.在此基础上,采用自适应容积卡尔曼滤波(ACKF)算法估计电池SOC,对系统噪声进行实时更新以提高估计精度.此外,对于计算过程中由于协方差矩阵失去正定性而出现平方根无法分解的问题,利用奇异值分解的方法代替Cholesky分解,以提高数值计算的稳定性.最后将BCRLS与ACKF相结合以实现模型参数和SOC的联合估计,并在不同工况和初始值不精确的情况下进行算法验证,结果表明本文所提算法具有较高的精度,平均绝对误差在2%以内.  相似文献   

18.
准确估算荷电状态(SOC)可以为电池之间的均衡管理提供依据,延长锂电池组整体的使用寿命.针对中心差分卡尔曼滤波算法(CDKF)存在较大线性误差的问题,提出一种改进的CDKF算法.在原算法中引入迭代滤波思想,多次利用测量信息更新状态量估算值,使得观测信息不断迭代更新,基于LM优化方法不断修正协方差矩阵,有效减小了线性误差.首先基于二阶阻容(RC)电路单元模型,选择最小二乘参数辨识方法,辨识出模型阻容参数;然后进行HPPC实验,验证电池等效模型的准确性;最后分别在恒流放电和动态工况下应用改进后的CDKF算法对电池SOC和电压进行估计,并将估计结果与CDKF算法进行比较.两种工况下验证结果表明改进后的CDKF算法精度更高,SOC估计精度可提升1.16%,最大估计误差小于1.7%,算法收敛时间也比原算法短,改进后的CDKF算法在估计精度和鲁棒性方面均有所提升,更具有应用优势.  相似文献   

19.
锂离子电池荷电状态(SOC)估计技术是储能电站电池管理系统重要组成部分。为了实现对SOC的准确估算,提出一种改进概率神经网络(MPNN)用于储能电池荷电状态估计。相较于传统神经网络,结合概率函数和补偿机制的MPNN,不仅可避免陷入局部最优,而且具有更优秀的拟合能力,可进一步提高SOC估计精度。仿真实验表明,所提MPNN方法的SOC估计值平均绝对误差和均方误差均低于1%,获得了满意的性能。  相似文献   

20.
锂离子电池荷电状态(state of charge,SOC)的准确估计对于保证电池系统安全运行至关重要。目前基于门控循环单元(gated recurrent unit,GRU)等循环神经网络的SOC估计方法得到了广泛关注,其无需预设电池模型即可实现SOC准确估计。然而,这类估计方法存在计算复杂度过高而难以在工程中实际应用的问题。针对传统GRU神经网络估计SOC时需要进行大量隐状态迭代而导致计算复杂度过高的问题,提出了网络隐状态时序继承的递推更新方式,通过改进GRU网络的输出结构,从而实现了仅需对当前时刻采样数据进行一次网络计算即可准确获取当前时刻SOC估计值。与文献中报道传统GRU方法相比,该递推GRU方法在保证SOC估计准确度不降低的情况下,能减少99%以上的计算量,具有较好的应用前景。此外,针对部分应用场景中电池训练数据缺乏的问题,方法能够结合迁移学习来快速完成网络训练。通过实验室测试数据集以及公开数据集进行验证,该方法能对不同温度环境、不同老化状态以及不同型号的锂离子电池进行准确SOC估计,其最大估计误差均不高于3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号