共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为了提高数控铣削加工的生产效率,降低生产成本,同时改善生产工件的加工质量,根据最优化思想,建立以铣削加工参数为优化变量,以铣削力、机床主轴转速和加工面粗糙度等为约束条件,以最短加工时间和最低生产成本为目标的优化函数。在标准粒子群算法的基础之上,引入惩罚函数,将多约束优化问题转变为无约束优化问题,改善了求解过程的复杂性;同时,针对粒子群算法容易陷入局部最优的问题,将其与模拟退火算法结合,增强粒子的全局搜索能力,改善粒子的局部收敛性。通过仿真实例验证了改进粒子群算法的有效性和优越性,改善了工件的加工时间与生产成本。 相似文献
3.
4.
针对工业热处理生产中的钎焊炉调度问题,考虑到钎焊炉的能耗和生产效率,以工件加工时间最小化为目标,建立了钎焊炉调度问题的数学模型.结合粒子群算法快速收敛和模拟退火算法能从局部极值区域跳出等的优点,设计了求解模型的模拟退火粒子群算法.数值仿真实验证明了所提模型及算法的可行性和有效性. 相似文献
5.
6.
7.
8.
为解决应用于旅行商问题的基本粒子群算法存在的收敛精度不高且早熟等问题,提出一种改进自适应杂交退火粒子群(IAHAPSO)算法。该算法采用基于种群离散度的分种群式自适应调整惯性权重,引导种群的正确进化发展方向;采用模拟退火算法更新群体极值的策略,避免粒子搜索陷入局部最优解;并在种群发展过程中引入遗传杂交算子,增加种群的多样性。通过3种标准TSPLIB测试集验证所提IAHAPSO算法在求解精度及效率上的可行性和优越性。以四轴裁剪机试验系统进一步验证所提算法的有效性。 相似文献
9.
基于模拟退火粒子群算法的圆柱齿轮减速器的可靠性优化 总被引:1,自引:0,他引:1
模拟退火粒子群算法将模拟退火思想引入具有杂交和高斯变异的粒子群算法中,是一种简单快速的随机全局优化算法。将模拟退火粒子群算法与可靠性优化设计理论相结合,建立了最大化减速器传动系统可靠度的优化模型,提出了基于模拟退火粒子群算法的圆柱齿轮减速器可靠性优化方法。利用该优化方法进行一圆柱齿轮减速器的优化设计,其优化结果明显优于基本粒子群算法、混合罚函数法和传统设计方法。算例表明,该优化方法具有全局收敛且精度高的优越特性,是一种有效的可靠性优化设计方法,并对其他机械部件可靠性优化具有一定的参考意义。 相似文献
10.
11.
粒子群优化算法综述 总被引:1,自引:0,他引:1
黄磊 《机械工程与自动化》2010,(5)
首先介绍了PSO的原理及具体实现步骤;然后针对PSO算法在搜索的初期收敛速度很快,但在后期却易于陷入局部最优的缺点,提出了各种改进办法;最后介绍了PSO算法的应用领域以及研究展望. 相似文献
12.
针对同时配送多种不能混装货物的多隔室车辆路径问题,建立了最小化车辆行驶成本的数学模型,并提出一种改进粒子群优化算法进行求解。该算法借鉴传统粒子群优化算法与模拟退火算法的思想,以粒子群算法为主框架,在粒子更新过程中引入模拟退火中的Metropolis准则,以一定概率接受劣解,使粒子在寻优过程中能够概率性地跳出局部最优。通过对经典车辆路径问题算例进行改编实验,并与已有文献、基本粒子群优化算法、基本人工蜂群算法分别进行对比分析表明,所提算法不但求解多隔室车辆路径问题有效,而且在求解质量上具有明显优势。 相似文献
13.
为通过装配工艺优化提高车身装配尺寸质量,针对车身众多几何可行装配顺序,应用多属性有向图描述零件间的优先关系和装配控制特征数量,来去除非工程可行装配顺序。以装配尺寸质量为目标函数,提出粒子群—遗传混合算法优化零件间装配操作,通过线性装配偏差分析模型进行装配偏差累积运算,获得了最优装配顺序。通过车身侧围装配体阐述了装配控制特征的优化过程,结果表明,不同的装配顺序将影响装配控制特征的选择,从而影响最终的产品装配偏差。 相似文献
14.
粒子群优化算法是一种基于群智能的优化方法,量子粒子群优化算法是基于PSO进行改进的算法,规则简单、收敛速度快、易于编程实现。对于多约束条件的斜齿轮传动的优化设计,笔者提出了一种基于量子粒子群优化算法优化求解的方法,实践表明能够快速、有效求得优化解,是求解齿轮优化设计问题的一个较好方案。 相似文献
15.
16.
17.
装配生产线上紧固螺母路径优化问题属于多项式复杂程度的非确定性问题(Non-deterministic Polynomial的问题,即NP完全问题),由于该问题的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。针对该问题,本文提出一种采用改进粒子群算法寻找机械手最优运行路径的新方法,提出的算法是通过引入遗传算法中的变异和交叉方法,提高基本粒子群算法的局部搜索能力来实现的。通过matlab仿真实验表明,提出的方法比常用的蚁群算法能在更短的时间内快速、稳定的寻找到最优路径,而且需要设置参数的较少,在浙江某汽车配件厂流水线上应用取得的成效证明了提出方法的有效性。 相似文献
18.
改进粒子群优化算法在工程优化问题中的应用研究 总被引:10,自引:1,他引:10
粒子群优化(PSO)算法是一种群集智能方法,它通过粒子之间的合作与竞争以实现对多维复杂空间的高效搜索。在对于粒子群群体构造和粒子多样性对收敛速度和精度影响的研究基础上提出了一种改进型粒子群优化算法。针对工程中的有约束的优化问题,将改进粒子群算法与函数法相结合进行求解。计算实例表明改进型粒子群优化算法大大改善了传统PSO算法的全局收敛性能,解的精度提高了很多。 相似文献
19.
针对单目标粒子群优化算法局部搜索能力差,不能有效求解高维、复杂工程问题等缺点,提出了一种改进的粒子群优化算法,即单纯形粒子群优化方法的混合算法(SM PSO)。该混合算法,在继承粒子群优化算法原有优点的同时,不但可减少计算规模,且有效地增强了粒子群优化算法的局部搜索能力,提高了算法的鲁棒性能。文中采用30维经典测试函数及齿轮减速器优化问题作为算例,验证了该算法的优越性能。 相似文献