首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ethylene biosynthesis and signal transduction play critical roles in plant sex differentiation. ACS (1-aminocyclopropane-1-carboxylic acid synthase) is a rate-limiting enzyme in ethylene biosynthesis. However, the understanding of the ACS gene family in Cucurbita maxima is limited. Here, we identified and characterized 13 ACS genes in the C. maxima genome. All ACS genes could be divided into three groups according to a conserved serine residue at the C-terminus. Thirteen CmaACS genes were found to be randomly distributed on 10 of the 20 chromosomes of C. maxima. The ACS gene exhibits different tissue-specific expression patterns in pumpkin, and four ACS genes (CmaACS1, CmaACS4, CmaACS7, and CmaACS9) were expressed specifically in both the female and male flowers of C. maxima. In addition, the expression levels of CmaACS4 and CmaACS7 were upregulated after ethephon and IAA treatments, which ultimately increased the number of female flowers, decreased the position of the first female flower and decreased the number of bisexual flowers per plant. These results provide relevant information for determining the function of the ACS genes in C. maxima, especially for regulating the function of ethylene in sex determination.  相似文献   

3.
4.
Eighty-five accessions of Buffalo gourd,Cucurbita foetidissima HBK., were assayed for variation in seven fruit and seed characteristics: fruit diameter (−x = 65 mm); seed weight per 100 seeds (−x = 3.8 g); seed weight per fruit (−x = 8.4 g); seed number per fruit (−x = 225); percentage embryo in seed (−x = 67.3%); percent crude fat of whole seed (−x = 32.9%); and percent crude protein of defatted embryo (−x = 69.5%). The variation in amino acid distribution (12) accessions) and in oil composition (15 accessions) was obtained. Relationships among traits were explored. Agronomic improvement through breeding was also discussed. Arizona Agricultural Experiment Station No. 2805.  相似文献   

5.
The objective of this study was to investigate the effect of chia (Salvia hispanica L.) seed coat color on oil content and fatty acid composition, as well as the effect of different growing areas on chemical variation. This study was carried out using white and black-spotted chia seeds grown together at five locations of Ecuador. Oil content was not significantly (P < 0.05) different for any of the comparative analyses performed between white and black-spotted seeds at all, although significant differences in oil content among locations were detected. The seeds from the San Pablo location showed the highest oil concentration (34.5%). No significant differences among fatty acids at any of the location were detected between white and black-spotted seeds; however, significant differences in fatty acids composition between sites were found. Overall, significant (P < 0.05) differences in palmitic, oleic, linoleic, and α-linolenic fatty acid compositions among oils from seeds grown in different locations were detected. In conclusion, this paper shows that the larger differences found in oil content and fatty acid composition are due to location (because of the environmental differences) rather than chia seed coat color.  相似文献   

6.
7.
8.
Sesame lignans, including mainly sesamin and sesamolin, has been reported to have multiple functions beneficial to health. This study analyzed sesamin and sesamolin contents by HPLC in 215 sesame lines from a core collection in China. The results showed the core sesame germplasm in China has a broad variation from 2.49 to 18.01 mg/g with average 8.54 mg/g in total of sesamin and sesamolin. On average, sesamin contents in the lines with a white seed coat color were significantly higher than in those samples with brown, yellow and black colors (P < 0.01). The lines with a black seed coat had the highest coefficient of variation followed by those with brown, yellow and white seed coats. The correlation coefficient between sesamin and sesamolin in the sesames with different seed coat colors ranked as white (R = 0.23) < yellow (R = 0.44) < brown (R = 0.72) < black (R = 0.77). The results of this study provide valuable background information on sesame germplasm in China and identified potential genotypes for breeding high sesamin or sesamolin cultivars.  相似文献   

9.
10.
11.
12.
White lupin (Lupinus albus L.) is a pulse annual plant cultivated from the tropics to temperate regions for its high-protein grain as well as a cover crop or green manure. Wild populations are typically late flowering and have high vernalization requirements. Nevertheless, some early flowering and thermoneutral accessions were found in the Mediterranean basin. Recently, quantitative trait loci (QTLs) explaining flowering time variance were identified in bi-parental population mapping, however, phenotypic and genotypic diversity in the world collection has not been addressed yet. In this study, a diverse set of white lupin accessions (n = 160) was phenotyped for time to flowering in a controlled environment and genotyped with PCR-based markers (n = 50) tagging major QTLs and selected homologs of photoperiod and vernalization pathway genes. This survey highlighted quantitative control of flowering time in white lupin, providing statistically significant associations for all major QTLs and numerous regulatory genes, including white lupin homologs of CONSTANS, FLOWERING LOCUS T, FY, MOTHER OF FT AND TFL1, PHYTOCHROME INTERACTING FACTOR 4, SKI-INTERACTING PROTEIN 1, and VERNALIZATION INDEPENDENCE 3. This revealed the complexity of flowering control in white lupin, dispersed among numerous loci localized on several chromosomes, provided economic justification for future genome-wide association studies or genomic selection rather than relying on simple marker-assisted selection.  相似文献   

13.
Soybeans are a major crop that produce the best vegetable oil and protein for use in food and beverage products worldwide. However, one of the most well-known viral infections affecting soybeans is the Soybean Mosaic Virus (SMV), a member of the Potyviridae family. A crucial method for preventing SMV damage is the breeding of resistant soybean cultivars. Adult resistance and resistance of seedcoat mottling are two types of resistance to SMV. Most studies have focused on adult-plant resistance but not on the resistance to seedcoat mottling. In this study, chromosome segment-substituted lines derived from a cross between Suinong14 (cultivated soybean) and ZYD00006 (wild soybean) were used to identify the chromosome region and candidate genes underlying soybean resistance to seed coat mottling. Herein, two quantitative trait loci (QTLs) were found on chromosome 17, and eighteen genes were found in the QTL region. RNA-seq was used to evaluate the differentially expressed genes (DEGs) among the eighteen genes located in the QTLs. According to the obtained data, variations were observed in the expression of five genes following SMV infection. Furthermore, Nicotiana benthamiana was subjected to an Agrobacterium-mediated transient expression assay to investigate the role of the five candidate genes in SMV resistance. It has also been revealed that Glyma.17g238900 encoding a RICE SALT SENSITIVE 3-like protein (RSS3L) can inhibit the multiplication of SMV in N. benthamiana. Moreover, two nonsynonymous single-nucleotide polymorphisms (SNPs) were found in the coding sequence of Glyma.17g238900 derived from the wild soybean ZYD00006 (GsRSS3L), and the two amino acid mutants may be associated with SMV resistance. Hence, it has been suggested that GsRSS3L confers seedcoat mottling resistance, shedding light on the mechanism of soybean resistance to SMV.  相似文献   

14.
Neo-tetraploid rice with high fertility is a useful germplasm for polyploid rice breeding, which was developed from the crossing of different autotetraploid rice lines. However, little information is available on the molecular mechanism underlying the fertility of neo-tetraploid rice. Here, two contrasting populations of tetraploid rice, including one with high fertility (hereafter referred to as JG) and another with low fertility (hereafter referred to as JD), were generated by crossing Huaduo 3 (H3), a high fertility neo-tetraploid rice that was developed by crossing Jackson-4x with 96025-4x, and Huajingxian74-4x (T452), a low fertility autotetraploid rice parent. Cytological, global genome sequencing-based bulked-segregant (BSA-seq) and CRISPR/Cas9 technology were employed to study the genes associated with pollen fertility in neo-tetraploid rice. The embryo sacs of JG and JD lines were normal; however, pollen fertility was low in JD, which led to scarce fertilization and low seed setting. Cytological observations displayed low pollen fertility (25.1%) and approximately 31.3 and 27.2% chromosome lagging at metaphase I and II, and 28.8 and 24.8% chromosome straggling at anaphase I and II in JD, respectively. BSA-seq of F2–3 generations and RNA-seq of F4 generation detected a common fragment, i.e., 18,915,234–19,500,000, at chromosome 7, which was comprised of 78 genes associated with fertility. Among 78 genes, 9 genes had been known to be involved in meiosis and pollen development. Two mutants ny1 (LOC_Os07g32406) and ny2 (LOC_Os07g32040) were generated by CRISPR/Cas9 knockout in neo-tetraploid rice, and which exhibited low pollen fertility and abnormal chromosome behavior. Our study revealed that two unknown genes, LOC_Os07g32406 (NY1) and LOC_Os07g32040 (NY2) play an important role in pollen development of neo-tetraploid rice and provides a new perspective about the genetic mechanisms of fertility in polyploid rice.  相似文献   

15.
16.
The relationships among 55 wheat accessions (47 accessions collected from Iran and eight accessions provided by the Institute of Plant Biology of the University of Zurich, Switzerland) belonging to eight species carrying A genome (Triticum monococcum L., T. boeoticum Boiss., T. urartu Tumanian ex Gandilyan, T. durum Desf., T. turgidum L., T. dicoccum Schrank ex Schübler, T. dicoccoides (Körn. ex Asch. & Graebner) Schweinf. and T. aestivum L.) were evaluated using 31 A genome specific microsatellite markers. A high level of polymorphism was observed among the accessions studied (PIC = 0.77). The highest gene diversity was revealed among T. durum genotypes, while the lowest genetic variation was found in T. dicoccoides accessions. The analysis of molecular variance (AMOVA) showed a significant genetic variance (75.56%) among these accessions, representing a high intra-specific genetic diversity within Triticum taxa in Iran. However, such a variance was not observed among their ploidy levels. Based on the genetic similarity analysis, the accessions collected from Iran were divided into two main groups: diploids and polyploids. The genetic similarity among the diploid and polyploid species was 0.85 and 0.89 respectively. There were no significant differences in A genome diversity from different geographic regions. Based on the genetic diversity analyses, we consider there is value in a greater sampling of each species in Iran to discover useful genes for breeding purposes.  相似文献   

17.
Leaf size is an important agronomic trait directly affecting yield in rice, and thus understanding the genes determining leaf size is important in breeding. In this study, one Leaf Mutant 7 (lm7) with small leaf size was isolated using ethyl methane sulphonate (EMS) mutagenesis from the japonica Zhenggeng 1925. MutMap by whole genome resequencing of phenotypic bulks revealed that LM7 is likely located in the 133 kb region on chromosome 7 using F2 population from a cross between lm7 and wild-type (WT) Zhenggeng 1925. The candidate gene encoding heat shock protein OsHSP40 for LM7 was functionally validated. Disruption of this gene in Oshsp40 mutants significantly reduced the leaf size compared with that of WT in rice. Microscopic examination showed that OsHSP40 modulated leaf size via regulating the veins formation and cell size/cell number. Nucleotide diversity analysis indicated that a single nucleotide polymorphism (SNP) variation of C to T in the coding region of OsHSP40 may cause small leaves among rice accessions. Therefore, the natural variation of OsHSP40 contributing to leaf size might be useful for rice breeding.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号