首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, overall thermal efficiency and thermo-economic function of solar driven Stirling heat engine with regenerative heat losses, conducting thermal bridging losses using evolutionary algorithm based on second version of non-dominated sorting genetic algorithm (NSGA-II) in matrix laboratory (MATLAB) simulink environment. Effects of design parameters as absorber temperature, concentrating ratio, radiative and convective heat transfers are considered for the investigation. Pareto frontier is obtained for triple and dual objectives and the best optimal value is selected through four different decision making techniques viz. Fuzzy Bellman-Zadeh, Shannon’s entropy, LINMAP and TOPSIS. The optimum values of average absorber temperature and concentrating ratio are found to be 1168 K and 1300, respectively. Triple objective evolutionary approach applied to the proposed model gives power output, overall thermal efficiency and thermo-economic function as (38.96 kW, 0.2392, 0.3124) which are 17.09%, 35.09% and 10.74%, respectively lower in comparison with reversible system. With the objective of error investigation, the average and maximum error of the obtained results are reckoned at last.  相似文献   

2.
This paper examines how applicable approximate Jacobian inversions are when implemented in the security analysis simulations of 132 kV power subtransmission. The complete Scottish 400/275/132 kV power transmission network was simulated, including the 132 kV subtransmission network with its high r/x ratios. Both the coupled and decoupled Maclaurin–Newton load flow algorithms were tested. It was proved that high r/x ratios found in the 132 kV level, five times higher than in 400/275 kV, have an important influence on convergence and accuracy of the inversion Jacobian load flow algorithms. It was found that the decoupled inversion load flow was applicable for 132 kV, it converged regularly, but had worse convergence and accuracy characteristics, compared to 400/275 kV applications, while the coupled inversion load flow was not applicable at all for 132 kV, it always diverged.  相似文献   

3.
This article presents the automatic generation control of an unequal three area thermal system. Single stage reheat turbines and generation rate constraints of 3%/min are considered in each control area. Controllers such as Integral (I), Proportional – Integral (PI), Proportional – Integral – Derivative (PID), and Proportional – Integral – Derivative Plus Second Order Derivative (PID + DD) are treated as secondary controllers separately. A nature inspired optimization technique called Ant Lion Optimizer (ALO) algorithm is used for simultaneous optimization of the controller gains. Comparison of dynamic responses of frequencies and tie line powers corresponding to ALO optimized I, PI, PID and PID + DD controller reveal the better performance of PID + DD controller in terms of lesser settling time, peak overshoots as well as reduced oscillations. Robustness of the optimum gains of best controller obtained at nominal conditions is evaluated using sensitivity analysis. Analysis exposed that the optimum PID + DD controller gains obtained at nominal are robust and not necessary to reset again for changes in loading, parameter like inertia constant (H), size and position of disturbance. Furthermore, the performance of PID + DD controller is found better as compared to PID controller against random loading pattern condition.  相似文献   

4.
This paper presents a step towards the design of robust non-fragile power system stabilizers (PSSs) for single-machine infinite-bus systems. To ensure resiliency of a robust PSS, the proposed approach presents a characterization of all stabilizers that can guarantee robust stability (RS) over wide range of operating conditions. A three-term controller (x1 + x2s)/(1 + x3s) is considered to accomplish the design. Necessary and sufficient stability constraints for existing of such controller at certain operating point are derived via Routh–Hurwitz criterion. Continuous variation in the operating point is tackled by an interval plant model where RS problem is reduced to simultaneous stabilization of finite number of plants according to Kharitonov theorem. Controller triplets that can robustly stabilize vertex plants are characterized in a similar manner. The most resilient controller is computed at the center of maximum-area inscribed rectangle. Simulation results confirm robustness and resiliency of the proposed stabilizer.  相似文献   

5.
A 100 kW regenerative Brayton heat engine driven by the hybrid of fossil fuel and solar energy was considered for optimization based on multiple criteria. A thermodynamic model of such hybrid system was developed so that the power output, thermal efficiency and dimensionless thermo-economic performance with the imperfect performance of parabolic dish solar collector, the external irreversibility of Brayton heat engine and conductive thermal bridging loss could be obtained. Evolutionary algorithm based on NSGA-II (Elitist Non-dominated Sorting Genetic Algorithm) was employed to optimize triple-objective and dual-objective functions, where the temperatures of hot reservoir, cold reservoir and working fluid, the effectiveness of hot-side heat exchanger, cold-side heat exchanger and regenerator were considered as design variables. Using decision makings, including Shannon Entropy, LINMAP and TOPSIS methods, the final optimal solutions were selected from Pareto frontier obtained by NSGA-II. The results show that there exists an appropriate working fluid temperature to cause optimal solution under each given condition. The comparisons of triple-objective and dual-objective optimization with single-objective optimization indicate that multi-objective optimization can yield the more suitable results due to the lower deviation index from the ideal solution. In the analysis of triple-objective optimization, an expected result is obtained that the optimal values of the power out, efficiency and dimensionless thermo-economic performance of solar-dish Brayton system (68.65 kW, 0.2331 and 0.3077) are 22.6%, 34.9% and 18.4% respectively less than that of convectional Brayton heat engine. Finally, a range of functional relationship between the optimized objectives in Pareto frontier is fitted to provide more detailed insight into the optimal design of solar-dish Brayton system.  相似文献   

6.
Integration of solar photovoltaic systems with diesel generators for the electrification of remote and rural areas would assist in expanding the electricity access in the sub-Saharan Africa region. In fact, countries of this region are well endowed in solar resource: their mean daily solar radiation exceeds 5.5 kWh/m2/day. They are, therefore, good locations for PV systems. This paper deals with an experimental study of the dynamic behavior of a hybrid system prototype (based on “flexy-energy” concept) set up at Kamboinsé, located at 15 km far from Ouagadougou (12, 22° N and 1, 31° W) in Burkina Faso. The prototype is composed of a 2.85 kWp PV array, a 3.3 kW single phase inverter and a diesel generator rated at 9.2 kW. Two resistive load banks of about 4 kW each are used to simulate the load profiles. Experimental results show that the PV generation leads the distribution feeder to shift toward higher voltages. The voltage rise is exacerbated when the PV generation is at its highest and the demand at its lowest. Care should then be taken to ensure that for a hybrid PV/diesel system, the PV rated power connected to each phase of the diesel generator is as equal as possible. The present study also points out that “well designed” inverters generate very small voltage harmonics and current distortions, even when high PV penetration systems are considered.  相似文献   

7.
Low-concentration photovoltaic (LCPV) system has huge potential for further cost reduction of solar photovoltaic (PV) power as compared to flat panel PV. The dependence of steady state and dynamic parameters on concentration and temperature is crucial to extract maximum power from solar photovoltaic system. This article aims to present the effect of varying concentration and temperature on steady state and dynamic parameters of LCPV system under actual test conditions (ATC). The rate of change in ISC with solar irradiation i.e., dISC/dG is found as 0.25 A/W assuming ≈±1 °C change in module temperature. The effect of temperature on inherent material properties responsible for photo-conversion efficiency is studied using impedance spectroscopy technique. A linear response of series resistance of LCPV module is observed with respect to change in module temperature, i.e. dRS/dT from 297 to 333 K is in the range of 1.15–1.20 Ω with a rate of 1 mΩ/K. From real-time analysis of LCPV system open-circuit voltage found decreasing from 21 to 20.6 V with temperature coefficient of voltage ≈−0.061 V/K. The dynamic resistance has a positive coefficient of module temperature i.e., drd/dT given by 0.49 Ω/K.  相似文献   

8.
In this paper, linear proportional–integral (PI) and nonlinear flatness-based controllers for dc link stabilization for fuel cell/supercapacitor hybrid power plants are compared. For high power applications, 4-phase parallel boost converters are implemented with a switching interleaving technique for a fuel cell (FC) converter, and 4-phase parallel bidirectional converters are implemented with a switching interleaving technique for a supercapacitor converter in the laboratory. As controls, mathematical models (reduced-order models) of the FC converter and the supercapacitor converter are given. The prototype small-scale power plant studied is composed of a PEMFC system (the Nexa Ballard FC power generator: 1.2 kW, 46 A) and a supercapacitor module (100 F, 32 V, based on Maxwell Technologies Company). Simulation (by Matlab/Simulink) and experimental results demonstrate that the nonlinear differential flatness-based control provides improved dc bus stabilization relative to a classical linear PI control method.  相似文献   

9.
This paper presents the development, validation and design optimization of a moving-magnet tubular linear permanent magnet motor (TLPMM) with a trapezoidal permanent magnet shape. The design optimization was implemented by a two-dimensional Finite-Element Analysis (2-D FEA) and the validation was established by using Matlab software. The proposed motor has been designed to produce 85 W output power which is enough to operate the reciprocating compressor of a household refrigerator system. The purpose of the optimization is to achieve a maximum efficiency and minimum losses, where the angle of PMs, split-ratio and Tmr/Tp after optimized, the motor produced the highest efficiency by 93.8%.  相似文献   

10.
This paper proposes a model for calculating the total supply capability (TSC) for distribution system considering both feeder and substation transformer contingencies. Existing models and methods for TSC only consider substation transformer contingencies and ignore feeder contingencies. However, the feeder contingencies occur much more frequently than substation transformer contingencies in practice. Moreover, some operation state fail the feeder contingencies N  1 verification even they pass the transformer contingencies N  1 verification. In this paper, a TSC model is firstly proposed in which feeder and transformer N  1 contingencies are fully considered. This model is designed in feeder level, which means the topology of interconnection among feeders is accurately modeled. Secondly, a supplementary model for load balancing is set up for a better load distribution solution on feeders and transformers at TSC loading. Finally, the method is tested in a test distribution system and a real partial distribution network and the results are verified by the traditional N  1 simulation.  相似文献   

11.
As power systems become more complex and heavily loaded, voltage collapse has become one of the most destructive events in modern power systems leading to blackouts in electric utilities worldwide. Voltage collapse is mainly caused by operating power systems at lower stability margins due to a surge in electric power demand. This paper presents an optimal unified power flow controller (UPFC) placement and load shedding coordination approach for voltage collapse prevention in N  K (K = 1, 2 and 3) contingency condition using Hybrid Imperialist Competitive Algorithm-Pattern Search (HICA-PS). ICA is the main optimizer of the proposed algorithm while pattern search is applied to further fine tune the results of the ICA. To show the effectiveness of the proposed approach in preventing voltage collapse in complex power systems, we implemented it on the New-England 39 bus power system. Its performance was also compared to that of some classical optimization techniques. Decrease in load shedding amounts, continuity of energy supply and voltage collapse prevention is the main positive features of the proposed approach.  相似文献   

12.
This study proposes a scheme for extending the low speed range of operation of a Doubly Fed Induction Generator (DFIG) without down grading the efficiency. Also, only fractional rated converters are employed. The technique involves two operational modes for the generator. When the rotor speed is between 70% and 130% of the synchronous speed, the machine is operated in the normal Doubly Fed Induction Generator (DFIG) mode and when the rotor speed falls below 70%, it is operated in Stator Short Circuited (SSC) mode. The switch-over from the DFIG mode to the SSC mode is carried out at a threshold speed to maintain the efficiency of generator with the same fractional rated converters. The computer simulations on a typical DFIG (250 kW) in Matlab/Simulink environment illustrate that the range of efficiency improvement is from zero to 15%. Further, the experimental results on a 2.3 kW DFIG set up are also illustrated to demonstrate the efficacy of the scheme.  相似文献   

13.
Statistical analysis of failures and forced outages of power transformers constitute an important basis for asset management of these transformers. Results of the statistical analysis can be used, for example, to enhance utility reliability, influence transformer design and technology, and improve maintenance and condition monitoring practices. In addition, various methods for transformer reliability evaluation require that the expected values of component outage rates, outage durations, and repair durations be known. In this paper, outage data are obtained from the Egyptian Electricity Transmission Company (EETC). This work presents outage data analysis over eight years, from 2002 to 2009, for 1922 (average number) transformers in voltage populations ranging from 33 kV to 500 kV and MVA rating from 5 MVA to 500 MVA. Forced outages due to correct and false action of transformer’s protection systems are carefully considered. Outage data analysis is conducted according to two basic phases. In the first phase, failure and repair analysis of transformers is performed while in the second phase impact of transformer outages on customers is assessed. Percentage average number of failures (%AANF) and annual average repair time (AART) per transformer are used to represent the failure and repair data of power transformers. Two indicators are used to represent the impact of transformer outages on customer interruptions. These indicators are the annual average interrupted MW (AAIMW) and annual average customer-interruption duration (AACID). A summary of the main outcomes of the work presented in this paper is provided in the conclusions’ section; however, it is worthy to be mentioned here that the fire-fighting systems are responsible for the highest number of false trips in all voltage subpopulations except the 220 kV subpopulation where the dominant cause of false trips is the busbar protection. Therefore, it is recommended to improve the maintenance and design of this protection equipment to reduce the failure rate of power transformers.  相似文献   

14.
This paper investigates the Sustainable Saturation Operation (SSO) of Ferrite Core Power Inductors (FCPIs) in Switch Mode Power Supplies (SMPSs). A ferrite inductor is considered in SSO if its current ripple, power losses and temperature rise are acceptable and reliable for both the device and the SMPS, despite the inductance drop determined by the core saturation. An algorithm is discussed, which identifies SSO-compliant FCPIs with minimum size and volume, given the SMPS specifications about the allowed power losses, temperature rise and peak-to-peak current ripple of the inductor. The experimental results relevant to a 465 kHz/3.3 V/1.5 A buck converter show that SSO-compliant inductors allow to increase the SMPS power density, while preserving the overall converter efficiency. Despite the proposed low power application, the findings relevant to the utilization of power inductors in partial saturation have general conceptual valence and similar investigations can be prospectively re-assessed for few kW output power DC/DC converters.  相似文献   

15.
The purpose of this paper is to design a good tracking controller for the generator Automatic Voltage Regulator (AVR) system. A fuzzy logic-based controller that is called Fuzzy P + Fuzzy I + Fuzzy D (FP + FI + FD) controller has been designed optimally and applied to AVR system. In the proposed method, optimal tuning of controller parameters is very important to achieve the desired level of robust performance. Thus, a hybrid of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) (HGAPSO) technique has been used to find a better fuzzy system control. The motivation for using this hybrid method is to increase disturbance rejection effort, reduce fuzzy system efforts and take large parametric uncertainties into account. The developed FP + FI + FD control strategy leads to a flexible controller with simple structure that is easy to implement. The simulation results have been compared with the conventional Proportional–Integral–Derivative (PID) and fuzzy PID controllers. Three cases of simulation have been performed, case 1: comparing the tracking capability of the controllers, case 2: comparing the disturbance rejection capability of the controller and case 3: evaluating the performance of the controllers assuming that amplifier and exciter system parameters have 50% uncertainty. The simulation results shows that the proposed parallel FP + FI + FD controller has good performance from the perspective of overshoot/undershoot, settling time, and rise time in comparison with both conventional and fuzzy PID controllers.  相似文献   

16.
This paper addresses the implementation of a real time simulator based on an existing electromagnetic simulating program called ATP-EMTP. The simulator is developed to stream sampled values on an Ethernet network using the protocol IEC61850-9-2. This implementation is done on a general purpose PC. The minimum simulation time step and the maximum sample rate achieved were 69 μs and 240 S/cycle respectively. The main components of the development as well as the evaluation of the performance of the simulator for different cases are described in this paper.  相似文献   

17.
In order to enhance the fuel economy of hybrid vehicle and increase the mileage of continuation of journey, a fuzzy logic control is utilized to design energy management strategies for fuel cell/battery (FC + B) hybrid vehicle and fuel cell/battery/ultra-capacitor (FC + B + UC) hybrid vehicle. The models of hybrid vehicle for FC + B and FC + B + UC structure are developed by electric vehicle simulation software ADVISOR which uses a hybrid backward/forward approach. The results demonstrate that the proposed control strategy can satisfy the power requirement for four standard driving cycles and achieve the power distribution among various power sources. The comprehensive comparisons with the power tracking control strategy which is wide adopted in ADVISOR verify that the proposed control strategy has better rationality and validity in terms of fuel economy and dynamic property in four standard driving cycles. Therefore, the proposed strategy will provide a novel approach for the advanced energy management system of hybrid vehicle.  相似文献   

18.
This paper presents a multi-objective optimal operation of meshed AC/DC power grids including multi-terminal voltage-source-converter-based high-voltage direct current (VSC-MTDC) systems. The proposed approach is modeled as a corrective security-constrained optimal power flow (CSC-OPF) problem, with the minimization of both the operation cost and power loss as the objectives. Moreover, it provides a cost-effective solution to assist in decision-making, and improves the system security during operation. The N  1 contingency security criterion is enforced for both AC and DC transmission networks, and corrective control is used to eliminate or alleviate post-contingency security violations. The corrective control actions used in this paper include not only secure operation control actions, but also economical post-contingency corrective control of the multi-terminal VSC-HVDC. To increase the computation speed, a contingency screening technique is applied to CSC-OPF by efficiently selecting the most severe case of the N  1 contingency, as obtained using a voltage security index (VSI). The proposed approach uses the non-dominated sorting genetic algorithm (NSGA-II) to find multi-objective OPF solutions by checking the post-contingency state feasibility while taking into account post-contingency corrective actions. Simulation results confirm the validity and effectiveness of this approach.  相似文献   

19.
In this paper, a novel combined approach which combines the first-order one-variable gray differential equation (GM (1, 1)) model derived from gray system theory and seasonal fluctuation from time series method (SFGM (1, 1)) is proposed. This combined model not only takes advantage of the high predictable power of GM (1, 1) model but also the prediction power of time series method. To improve the forecasting accuracy, an adaptive parameter learning mechanism is applied to SFGM (1, 1) model to develop a new model named APL-SFGM (1, 1). As an example, the statistical electricity demand data from 2002 to 2011 sampled from South Australia of Australia are used to validate the effectiveness of the two proposed models. Simulation and graphic results indicated that both of two proposed models achieve better performance than the original GM (1, 1) model. In addition, the APL-SFGM (1, 1) model, which is actually an adaptive adjustment model, obtains a higher forecasting accuracy as compared to the SFGM (1, 1) model.  相似文献   

20.
This article presents a stochastic multi-objective optimization framework for transmission expansion planning (TEP) with steady state voltage security management, using AC optimal power flow (AC-OPF). The objectives are to minimize the sum of transmission investment costs (ICs), minimize the Expected Operation Cost (EOC), minimize the Expected Load Shedding Cost (ELSC) and maximize the Expected Loading Factor (ELF). The system load uncertainty has been considered and the corresponding scenarios are generated employing the Monte Carlo (MC) simulations. A scenario reduction technique is applied to reduce the number of scenarios. A multi-objective mathematical programming (MMP) is formulated and the ε-constraint method is used to solve the formulated problem. The N  1 contingency analysis is also considered for the proposed TEP problem.The proposed TEP model has been applied to the well-known IEEE 24-bus Reliability Test System. The detailed results of the case study are presented and thoroughly analyzed. The obtained TEP results show the efficiency of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号