首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, a simple fatigue life prediction approach is proposed using fracture mechanics for laser beam welded Al‐alloy joints under variable amplitude loading. In the proposed approach, variable amplitude loading sequence is transformed into an equivalent constant amplitude loading using the root mean square model. The crack growth driving force K* is chosen to describe the fatigue crack growth rate. The influences of residual stress and its relaxation on fatigue life are taken into account in the proposed approach. The fatigue lives are also predicted using the traditional approach based on the S‐N curves and the rainflow counting method. The predicted results show that the proposed approach is better than the traditional approach.  相似文献   

2.
The propagation of fatigue cracks in specimens subjected to variable amplitude loading under plane strain conditions was investigated experimentally and numerically, to find the influence of the variable amplitude loading on the stabilised crack closure level. Experiments on four-point-bend specimens with a Gurney block load scheme, showed that the crack closure level depends on the crack length but not on the stress range of the fluctuations. Numerical simulations performed in the fatigue crack growth program FASTRAN-II showed good agreement with the experimental results. In addition, statistical uncertainty analyses performed on the fatigue life show that, for technical applications, the uncertainties in initial crack length and load levels have a greater influence on the uncertainty in fatigue life, than the fluctuation level of the load.  相似文献   

3.
4.
Most fatigue loaded components or structures experience a variety of stress histories under typical operating loading conditions. In the case of constant amplitude loading the fatigue crack growth depends only on the component geometry, applied loading and material properties. In the case of variable amplitude loading the fatigue crack growth depends also on the preceding cyclic loading history. Various load sequences may induce different load-interaction effects which can cause either acceleration or deceleration of fatigue crack growth. The recently modified two-parameter fatigue crack growth model based on the local stress–strain material behaviour at the crack tip [1,2] was used to account for the variable amplitude loading effects. The experimental verification of the proposed model was performed using 7075-T6 aluminum alloy, Ti-17 titanium alloy, and 350WT steel. The good agreement between theoretical and experimental data shows the ability of the model to predict the fatigue life under different types of variable amplitude loading spectra.  相似文献   

5.
It is a difficult task to predict fatigue crack growth in engineering structures, because they are mostly subjected to variable amplitude loading histories in service. Many prediction models have been proposed, but no agreed model on fatigue life prediction adequately considering loading sequence effects exists. In our previous research, an improved crack growth rate model has been proposed under constant amplitude loading and its good applicability has been demonstrated in comparison with various experimental data. In this paper, the applicability of the improved crack growth rate model will be extended to variable amplitude loading by modifying crack closure level based on the concept of partial crack closure due to crack‐tip plasticity. It is assumed in this model that the crack closure level can instantly go to the peak/valley due to a larger compression/tensile plastic zone resulted from the overload/underload effect, and gradually recovers to the level of constant amplitude loading with crack propagation. To denote the variation in the affected zone of overload/underload, a modified coefficient based on Wheeler model is introduced. The improved crack growth rate model can explain the phenomena of the retardation due to overload and the tiny acceleration due to underload, even the minor retardation due to overload followed by underload. The quantitative analysis will be executed to show the capability of the model, and the comparison between the prediction results and the experimental data under different types of loading history will be used to validate the model. The good agreement indicates that the proposed model is able to explain the load interaction effect under variable amplitude loading.  相似文献   

6.
Fatigue crack growth experiments were performed on surface cracked tensile specimens of Inconel 718 at 400 °C. The loading was carried out at constant as well as at variable amplitude. The experimental results for the mean growth rate were compared with predictions based on data obtained from testing of compact tension specimens. Both nominal data as well as data corrected from measured crack closure were used in the predictions. The corrected data provided much better predictions than the nominal ones indicating that the level of crack closure during the testing of the surface cracked specimens was much lower than in compact tension specimens.  相似文献   

7.
This paper investigates the effects of variable amplitude loading conditions on the fatigue lives of multiaxial rubber specimens. Two filled rubber materials were used and compared to investigate the effects of strain-crystallization on crack development NR, which strain crystallizes, and SBR, which does not. The applicability of Miner’s linear damage rule for predicting fatigue lives of variable amplitude tests in rubber and the use of both scalar and plane-specific equivalence parameters to characterize fatigue life results were also investigated. A fatigue life prediction approach that utilizes normal strain to find the critical plane and the cracking energy density on that plane to determine fatigue life is introduced and compared to other approaches. The effects of load sequence and temperature on fatigue life, as well as differences in fatigue lives using both stiffness and critical crack length failure criteria are discussed.  相似文献   

8.
In the present study, the effect of welding process and procedure on fatigue crack initiation from notches and fatigue crack propagation in AISI 304L stainless steel welds was experimentally investigated. Full penetration, double-vee butt welds have been fabricated and CCT type specimens were used. Lawrence's local-stress approach (a two-stage model) is used to predict the fatigue life. The notch-root stress method was applied to calculate the fatigue crack initiation life, while the fatigue crack propagation life was estimated using fracture mechanics concepts. The fatigue notch factor is calculated using Lawrence's approach. Constant amplitude fatigue tests with stress ratio, R=0 were carried out using 100 kN servo-hydraulic DARTEC universal testing machine with a frequency of 30 Hz. The predicted lives were compared with the experimental values. A good agreement has been reached. It is found that the weld procedure has a stronger effect on lives to initiation than on propagation lives.  相似文献   

9.
Predictions of variable amplitude fatigue crack growth in notched tensile specimens at an elevated temperature and relative high loads were conducted. The predictions were based on constant amplitude fatigue data and mean crack growth rates were calculated. Crack closure levels were calculated by comparison of crack closure free experimental data obtained with the so called constant KI,max-method and nominal data. Also, numerical simulations of the closure level throughout the specimens were performed. Although experimental data showed rather large a scatter it was concluded that variable amplitude crack growth rates can be predicted with reasonable agreement using constant amplitude fatigue data. Also, crack growth rates cannot be predicted by LEFM in the inelastic notch affected zone, even if absence of crack closure is assumed.  相似文献   

10.
ABSTRACT Fatigue crack growth of fibre reinforced metal laminates (FRMLs) under constant and variable amplitude loading was studied through analysis and experiments. The distribution of the bridging stress along the crackline in centre‐cracked tension (CCT) specimen of FRMLs was modelled numerically, and the main factors affecting the bridging stress were identified. A test method for determining the delamination growth rates in a modified double cracked lap shear (DCLS) specimen was presented. Two models, one being fatigue‐mechanism‐based and the other phenomenological, were developed for predicting the fatigue life under constant amplitude loading. The fatigue behaviour, including crack growth and delamination growth, of glass fibre reinforced aluminium laminates (GLARE) under constant amplitude loading following a single overload was investigated experimentally, and the mechanisms for the effect of a single overload on the crack growth rates and the delamination growth rates were identified. An equivalent closure model for predicting crack‐growth in FRMLs under variable amplitude loading and spectrum loading was presented. All the models presented in this paper were verified by applying to GLARE under constant amplitude loading and Mini‐transport aircraft wing structures (TWIST) load sequence. The predicted crack growth rates are in good agreement with test results.  相似文献   

11.
The mean load of a cyclic loading has a large effect on fatigue crack growth rates in metallic materials and bonded joints. In metallic structures, this effect has been attributed to plasticity-induced crack closure, but little is known about the mechanism responsible for this mean load effect on fatigue crack growth in adhesively bonded joints. This paper presents a computational investigation of the plasticity-induced crack closure mechanism affecting disbond growth in adhesively bonded joints under fatigue loading. The results show that the ratios of crack-opening and crack-closure are approximately independent of the level of plastic constraint, indicated by the ratio between the plastic zone size and the adhesive thickness. An effective strain-energy release rate parameter, which accounts for the crack closure behaviour, has been developed as a new correlating parameter for disbond growth. Comparisons with the experimental results pertinent to four different adhesive bonded joints reveal that this new correlating parameter is capable of unifying the fatigue growth rates by eliminating the effect of mean loads.  相似文献   

12.
A new mixed-mode threshold stress intensity factor is developed using a critical plane-based multiaxial fatigue theory and the Kitagawa diagram. The proposed method is a nominal approach since the fatigue damage is evaluated using remote stresses acting on a cracked component rather than stresses near the crack tip. An equivalent stress intensity factor defined on the critical plane is proposed to predict the fatigue crack growth rate under mixed-mode loading. A major advantage is the applicability of the proposed model to many different materials, which experience either shear or tensile dominated crack growth. The proposed model is also capable to nonproportional fatigue loading since the critical plane explicitly considers the influence of the load path. The predictions of the proposed fatigue crack growth model under constant amplitude loading are compared with a wide range of fatigue results in the literature. Excellent agreements between experimental data and model predictions are observed.  相似文献   

13.
14.
Fatigue crack growth behaviours in different welding zones of laser beam welded specimens were investigated using central crack tension specimens for 6156 aluminium alloy under constant amplitude loading at nominal applied stress ratio R = 0.5, 0.06, ?1. The experimental results showed that base metal (BM) exhibited superior fatigue crack resistance compared to weld metal (WM) and heat‐affected zone (HAZ). Crack growth resistance of WM was the lowest. The exponent m values for BM and HAZ at different stress ratios are close and around 2.6, while m for WM at different stress ratio is around 4.7. The discrepancy between crack growth rates for WM and BM is more evident with increasing stress ratio, while it is a little change for HAZ and BM. Change of the microstructure in WM deteriorates the resistance of fatigue crack growth compared to BM. It was mainly due to grain boundary liquation and dissolving of second‐phase particles in the weld region. It was also found that the variety of fatigue crack resistance for different welding zones is in conformity with the change of hardness. BM with the highest hardness exhibited the maximum resistance for fatigue crack, and WM with the lowest hardness exhibited the minimum fatigue crack resistance.  相似文献   

15.
A new calculation approach is suggested to the fatigue life evaluation of notched specimens under multiaxial variable amplitude loading. Within this suggested approach, if the computed uniaxial fatigue damage by the pure torsional loading path is larger than that by the axial tension–compression loading path, a shear strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage; otherwise, an axial strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage. Furthermore, the presented method employs shear strain‐based and axial strain‐based multiaxial fatigue damage parameters in substitution of equivalent strain amplitude to consider the influence of nonproportional additional hardening. The experimental data of GH4169 superalloy and 7050‐T7451 aluminium alloy notched components are used to illustrate the presented multiaxial fatigue lifetime estimation approach for notched components, and the results reveal that estimations are accurate.  相似文献   

16.
Service conditions experienced by rubber components often involve cyclic loads which are more complex than a constant amplitude loading history. Consequently, a model is needed for relating the results of constant amplitude characterization of fatigue behaviour to the effects of variable amplitude loading signals. The issue is explored here via fatigue crack growth experiments on pure shear specimens conducted in order to evaluate the applicability of a linear crack growth model equivalent to Miner's linear damage rule. This model equates the crack growth rate for a variable amplitude signal to the sum of the constant amplitude crack growth rates associated with each individual cycle. The variable amplitude signals were selected to show the effects of R-ratio (ratio of minimum to maximum energy release rate), load level, load sequence, and dwell periods on crack growth rates. In order to distinguish the effects of strain crystallization on crack growth behaviour, two filled rubber compounds were included: one that strain crystallizes, natural rubber, and one that does not, styrene-butadiene rubber. The linear crack growth model was found to be applicable in most cases, but a dwell effect was observed that is not accounted for by the model.  相似文献   

17.
During use, a component or a structure is exposed to variable amplitude loading, which influences the lifetime. Within the scope of this work, systematic investigations of different loading situations are carried out by means of experimental studies (part I) as well as analytical and numerical studies (part II). The experimental investigations show that overloads lead to retardation effects, which are influenced by several factors, e.g. the overload ratio, baseline‐level loading, number of overloads or the fraction of mixed mode. In a high–low–high block loading, both retarded and accelerated crack growth can be obtained, which is also influenced, e.g. by the block loading ratio and the length of the block. Moreover, experimental studies have been performed with load spectra, like FELIX/28, CARLOS vertical and WISPER. They have been applied in original form as well as in counted and reconstructed sequences.  相似文献   

18.
Load ratio effects are of prime concern when modeling of fatigue crack growth (FCG) rate is required as a prerequisite for a reliable life prediction. The majority of research efforts regarding the load ratio effects are based on Elber's ΔKeff approach. However, there are intrinsic difficulties encountered with its consistent application to FCG prediction. In this paper two popular crack-growth-life prediction codes FASTRAN and AFGROW are modified utilizing the enhanced partial crack closure model. The proposed utilization aggregates apparent closure mechanisms involved and demonstrates a better correlation and a significant scatter reduction of FCG data taken from literature, especially in the near-threshold region.  相似文献   

19.
The present paper summarizes the results of fatigue crack growth simulations for hollow wheelset axles. Within the scope of this paper different influencing factors of the remaining lifetime have been identified. Therefore different simulations using NASGRO have been performed with different initial crack depth as well as aspect ratios. Moreover the influence of press fitting on the remaining lifetime has been pointed out. Preliminary experimental studies using standardized fracture mechanical specimens have been used in order to optimize time- and cost-consuming component testing.  相似文献   

20.
Plasticity-induced crack closure is an observed phenomenon during fatigue crack growth. However, accurate determination of fatigue crack closure has been a complex task for years. It has been approached by means of experimental and numerical methods. The finite element method (FEM) has been the principal numerical tool employed. In this paper the results of a broad study of fatigue crack closure in plane stress and plane strain by means of FEM are presented. The effect of three principal factors has been analysed in depth, the maximum load, the crack length and the stress ratio. It has been found that the results are independent of maximum load and the crack length, and there exists a direct influence of the stress ratio. This relation has been numerically correlated and compared with experimental results. Differences have also been established between opening and closure points and between the different criteria employed to compute crack closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号