共查询到20条相似文献,搜索用时 15 毫秒
1.
Bin Hu Alicia J El Haj Jon Dobson 《International journal of molecular sciences》2013,14(9):19276-19293
Mechanical cues are employed to promote stem cell differentiation and functional tissue formation in tissue engineering and regenerative medicine. We have developed a Magnetic Force Bioreactor (MFB) that delivers highly targeted local forces to cells at a pico-newton level, utilizing magnetic micro- and nano-particles to target cell surface receptors. In this study, we investigated the effects of magnetically targeting and actuating specific two mechanical-sensitive cell membrane receptors—platelet-derived growth factor receptor α (PDGFRα) and integrin ανβ3. It was found that a higher mineral-to-matrix ratio was obtained after three weeks of magneto-mechanical stimulation coupled with osteogenic medium culture by initially targeting PDGFRα compared with targeting integrin ανβ3 and non-treated controls. Moreover, different initiation sites caused a differentiated response profile when using a 2-day-lagged magneto-mechanical stimulation over culture periods of 7 and 12 days). However, both resulted in statistically higher osteogenic marker genes expression compared with immediate magneto-mechanical stimulation. These results provide insights into important parameters for designing appropriate protocols for ex vivo induced bone formation via magneto-mechanical actuation. 相似文献
2.
3.
4.
Juan Xiao Rongbing Yang Sangita Biswas Xin Qin Min Zhang Wenbin Deng 《International journal of molecular sciences》2015,16(5):9283-9302
Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC) and induced pluripotent stem cell (iPSCs) derived precursor cells can modulate the autoimmune response in the central nervous system (CNS) and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS. 相似文献
5.
Hyun Hee Jang Youngsook Son Gabee Park Ki-Sook Park 《International journal of molecular sciences》2023,24(1)
Vasculogenic properties of bone marrow-derived mesenchymal stem cells (MSCs) have been reported, but it is still unclear whether the vasculogenic properties are restricted to some populations of MSCs or whether the entire population of MSCs has these properties. We cultured two different populations of MSCs in different culture media and their vasculogenic properties were evaluated using In vitro spheroid sprouting assay. Neither population of MSCs expressed markers of endothelial progenitor cells (EPCs), but they were different in the profiling of angiogenic factor expression as well as vasculogenic properties. One population of MSCs expressed basic fibroblast growth factor (bFGF) and another expressed hepatocyte growth factor (HGF). MSCs expressing HGF exhibited In vitro angiogenic sprouting capacity in response to bFGF derived from other MSCs as well as to their autocrine HGF. The vasculogenic mesenchymal stem cells (vMSCs) derived from the bone marrow also enhanced In vitro angiogenic sprouting capacity of human umbilical vein endothelial cells (HUVECs) in an HGF-dependent manner. These results suggest that MSCs exhibit different vasculogenic properties, and vMSCs that are different from EPCs may contribute to neovascularization and could be a promising cellular therapy for cardiovascular diseases. 相似文献
6.
Andrea Sorrentino Emil Malucelli Francesca Rossi Concettina Cappadone Giovanna Farruggia Claudia Moscheni Ana J. Perez-Berna Jose Javier Conesa Chiara Colletti Norberto Roveri Eva Pereiro Stefano Iotti 《International journal of molecular sciences》2021,22(9)
Biomineralization is the process by which living organisms generate organized mineral crystals. In human cells, this phenomenon culminates with the formation of hydroxyapatite, which is a naturally occurring mineral form of calcium apatite. The mechanism that explains the genesis within the cell and the propagation of the mineral in the extracellular matrix still remains largely unexplained, and its characterization is highly controversial, especially in humans. In fact, up to now, biomineralization core knowledge has been provided by investigations on the advanced phases of this process. In this study, we characterize the contents of calcium depositions in human bone mesenchymal stem cells exposed to an osteogenic cocktail for 4 and 10 days using synchrotron-based cryo-soft-X-ray tomography and cryo-XANES microscopy. The reported results suggest crystalline calcite as a precursor of hydroxyapatite depositions within the cells in the biomineralization process. In particular, both calcite and hydroxyapatite were detected within the cell during the early phase of osteogenic differentiation. This striking finding may redefine most of the biomineralization models published so far, taking into account that they have been formulated using murine samples while studies in human cell lines are still scarce. 相似文献
7.
Narmadaa Raman Siti A. M. Imran Khairul Bariah Ahmad Amin Noordin Wan Safwani Wan Kamarul Zaman Fazlina Nordin 《International journal of molecular sciences》2022,23(9)
Mechanotransduction is the process by which physical force is converted into a biochemical signal that is used in development and physiology; meanwhile, it is intended for the ability of cells to sense and respond to mechanical forces by activating intracellular signals transduction pathways and the relative phenotypic adaptation. It encompasses the role of mechanical stimuli for developmental, morphological characteristics, and biological processes in different organs; the response of cells to mechanically induced force is now also emerging as a major determinant of disease. Due to fluid shear stress caused by blood flowing tangentially across the lumen surface, cells of the cardiovascular system are typically exposed to a variety of mechanotransduction. In the body, tissues are continuously exposed to physical forces ranging from compression to strain, which is caused by fluid pressure and compressive forces. Only lately, though, has the importance of how forces shape stem cell differentiation into lineage-committed cells and how mechanical forces can cause or exacerbate disease besides organizing cells into tissues been acknowledged. Mesenchymal stem cells (MSCs) are potent mediators of cardiac repair which can secret a large array of soluble factors that have been shown to play a huge role in tissue repair. Differentiation of MSCs is required to regulate mechanical factors such as fluid shear stress, mechanical strain, and the rigidity of the extracellular matrix through various signaling pathways for their use in regenerative medicine. In the present review, we highlighted mechanical influences on the differentiation of MSCs and the general factors involved in MSCs differentiation. The purpose of this study is to demonstrate the progress that has been achieved in understanding how MSCs perceive and react to their mechanical environment, as well as to highlight areas where more research has been performed in previous studies to fill in the gaps. 相似文献
8.
Chiara Mazziotta Carmen Lanzillotti Maria Rosa Iaquinta Francesca Taraballi Elena Torreggiani John Charles Rotondo Lucia Otn-Gonzalez Elisa Mazzoni Francesca Frontini Ilaria Bononi Monica De Mattei Mauro Tognon Fernanda Martini 《International journal of molecular sciences》2021,22(5)
Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3′ untranslated region (3′-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/β-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes. 相似文献
9.
Yuhua Gao Zhiqiang Zhu Yuhua Zhao Jinlian Hua Yuehui Ma Weijun Guan 《International journal of molecular sciences》2014,15(3):3698-3710
The use of amnion and amniotic fluid (AF) are abundant sources of mesenchymal stem cells (MSCs) that can be harvested at low cost and do not pose ethical conflicts. In human and veterinary research, stem cells derived from these tissues are promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. This work aimed to obtain and characterize bovine amniotic fluid mesenchymal stem cells (AFMSC). The bovine AF from the amniotic cavity of pregnant gilts in the early stages of gestation (3- and 4-m-old bovine embryos) was collected. AFMSCs exhibit a fibroblastic-like morphology only starting from the fourth passage, being heterogeneous during the primary culture. Immunofluorescence results showed that AFMSCs were positive for β-integrin, CD44, CD73 and CD166, but negative for CD34, CD45. Meanwhile, AFMSCs expressed ES cell markers, such as Oct4, and when appropriately induced, are capable of differentiating into ectodermal and mesodermal lineages. This study reinforces the emerging importance of these cells as ideal tools in veterinary medicine; future studies aimed at a deeper evaluation of their immunological properties will allow a better understanding of their role in cellular therapy. 相似文献
10.
Lysann M. Kroschwald Felix Allerdt Anne Bernhardt Sandra Rother Kai Zheng Iram Maqsood Norbert Halfter Christiane Heinemann Stephanie Mller Matthias Schnabelrauch Michael C. Hacker Stefan Rammelt Aldo R. Boccaccini Vera Hintze 《International journal of molecular sciences》2021,22(23)
The present study analyzes the capacity of collagen (coll)/sulfated glycosaminoglycan (sGAG)-based surface coatings containing bioactive glass nanoparticles (BGN) in promoting the osteogenic differentiation of human mesenchymal stroma cells (hMSC). Physicochemical characteristics of these coatings and their effects on proliferation and osteogenic differentiation of hMSC were investigated. BGN were stably incorporated into the artificial extracellular matrices (aECM). Oscillatory rheology showed predominantly elastic, gel-like properties of the coatings. The complex viscosity increased depending on the GAG component and was further elevated by adding BGN. BGN-containing aECM showed a release of silicon ions as well as an uptake of calcium ions. hMSC were able to proliferate on coll and coll/sGAG coatings, while cellular growth was delayed on aECM containing BGN. However, a stimulating effect of BGN on ALP activity and calcium deposition was shown. Furthermore, a synergistic effect of sGAG and BGN was found for some donors. Our findings demonstrated the promising potential of aECM and BGN combinations in promoting bone regeneration. Still, future work is required to further optimize the BGN/aECM combination for increasing its combined osteogenic effect. 相似文献
11.
Yun-Peng Sun Ben-Long Zhang Jian-Wen Duan Huan-Huan Wu Ben-Quan Wang Zheng-Ping Yu Wen-Jun Yang Yun-Feng Shan Meng-Tao Zhou Qi-Yu Zhang 《International journal of molecular sciences》2014,15(3):3729-3745
Pancreatic cancer usually has a poor prognosis, and no gene therapy has yet been developed that is effective to treat it. Since a unique characteristic of bone marrow-derived mesenchymal stem cells (MSCs) is that they migrate to tumor tissues, we wanted to determine whether MSCs could serve as a vehicle of gene therapy for targeting pancreatic cancer. First, we successfully extracted MSCs from SD rats. Next, MSCs were efficiently transduced with NK4, an antagonist of hepatocyte growth factor (HGF) which comprising the N-terminal and the subsequent four kringle domains of HGF, by an adenoviral vector. Then, we confirmed that rat MSCs preferentially migrate to pancreatic cancer cells. Last, MSCs expressing NK4 (NK4-MSCs) strongly inhibited proliferation and migration of the pancreatic cancer cell line SW1990 after co-culture. These results indicate that MSCs can serve as a vehicle of gene therapy for targeting pancreatic cancer. 相似文献
12.
目的探讨乳鼠视网膜细胞条件分化液诱导骨髓间充质干细胞(BMSCs)的神经分化情况,以期为视网膜退行性疾病提供治疗方案。方法体外分离培养Wistar大鼠乳鼠BMSCs,观察BMSCs的增殖情况并进行鉴定;制备乳鼠视网膜细胞条件分化液,以其诱导BMSCs,观察BMSCs的神经分化情况,并行免疫组化鉴定。结果体外培养获得了较纯的BMSCs;在乳鼠视网膜细胞条件分化液的环境中,诱导后72h,BMSCs胞体收缩成锥形或球形,细胞突起变细、变长,呈神经细胞的典型形态;免疫组化结果显示,部分细胞呈神经元特异性烯醇化酶(NSE)、巢蛋白(nestin)和Thy1.1阳性反应。结论乳鼠视网膜细胞条件分化液可诱导BMSCs分化成视网膜神经节样细胞。 相似文献
13.
Hong Thi Nguyen Kasem Theerakittayakorn Sirilak Somredngan Apichart Ngernsoungnern Piyada Ngernsoungnern Pishyaporn Sritangos Mariena Ketudat-Cairns Sumeth Imsoonthornruksa Juthaporn Assawachananont Nattawut Keeratibharat Rangsirat Wongsan Ruttachuk Rungsiwiwut Chuti Laowtammathron Nguyen Xuan Bui Rangsun Parnpai 《International journal of molecular sciences》2022,23(6)
Corneal epithelium, the outmost layer of the cornea, comprises corneal epithelial cells (CECs) that are continuously renewed by limbal epithelial stem cells (LESCs). Loss or dysfunction of LESCs causes limbal stem cell deficiency (LSCD) which results in corneal epithelial integrity loss and visual impairment. To regenerate the ocular surface, transplantation of stem cell-derived CECs is necessary. Human Wharton’s jelly derived mesenchymal stem cells (WJ-MSCs) are a good candidate for cellular therapies in allogeneic transplantation. This study aimed to test the effects of treatments on three signaling pathways involved in CEC differentiation as well as examine the optimal protocol for inducing corneal epithelial differentiation of human WJ-MSCs. All-trans retinoic acid (RA, 5 or 10 µM) inhibited the Wnt signaling pathway via suppressing the translocation of β-catenin from the cytoplasm into the nucleus. SB505124 downregulated the TGF-β signaling pathway via reducing phosphorylation of Smad2. BMP4 did not increase phosphorylation of Smad1/5/8 that is involved in BMP signaling. The combination of RA, SB505124, BMP4, and EGF for the first 3 days of differentiation followed by supplementing hormonal epidermal medium for an additional 6 days could generate corneal epithelial-like cells that expressed a CEC specific marker CK12. This study reveals that WJ-MSCs have the potential to transdifferentiate into CECs which would be beneficial for further applications in LSCD treatment therapy. 相似文献
14.
Ji Yeon Kim Saeyoung Park Se-Young Oh Yu Hwa Nam Young Min Choi Yeonzi Choi Ha Yeong Kim Soo Yeon Jung Han Su Kim Inho Jo Sung-Chul Jung 《International journal of molecular sciences》2022,23(2)
Mesenchymal stem cells (MSCs) can differentiate into endoderm lineages, especially parathyroid-hormone (PTH)-releasing cells. We have previously reported that tonsil-derived MSC (T-MSC) can differentiate into PTH-releasing cells (T-MSC-PTHCs), which restored the parathyroid functions in parathyroidectomy (PTX) rats. In this study, we demonstrate quality optimization by standardizing the differentiation rate for a better clinical application of T-MSC-PTHCs to overcome donor-dependent variation of T-MSCs. Quantitation results of PTH mRNA copy number in the differentiated cells and the PTH concentration in the conditioned medium confirmed that the differentiation efficiency largely varied depending on the cells from each donor. In addition, the differentiation rate of the cells from all the donors greatly improved when differentiation was started at a high cell density (100% confluence). The large-scale expression profiling of T-MSC-PTHCs by RNA sequencing indicated that those genes involved in exiting the differentiation and the cell cycle were the major pathways for the differentiation of T-MSC-PTHCs. Furthermore, the implantation of the T-MSC-PTHCs, which were differentiated at a high cell density embedded in hyaluronic acid, resulted in a higher serum PTH in the PTX model. This standardized efficiency of differentiation into PTHC was achieved by initiating differentiation at a high cell density. Our findings provide a potential solution to overcome the limitations due to donor-dependent variation by establishing a standardized differentiation protocol for the clinical application of T-MSC therapy in treating hypoparathyroidism. 相似文献
15.
Sanshiro Kanazawa Hiroyuki Okada Dan Riu Yo Mabuchi Chihiro Akazawa Junichi Iwata Kazuto Hoshi Atsuhiko Hikita 《International journal of molecular sciences》2022,23(15)
It is well known that the properties of hematopoietic stem/progenitor cells (HSCs), such as their self-renewal ability and multipotency, are maintained through interactions with mesenchymal stem/stromal cells (MSCs). MSCs are rare cells that are present in the bone marrow and are useful for clinical applications due to their functional ability. To obtain the necessary number of cells, MSCs must be cultured to expand, but this causes a remarkable decrease in stem cell properties, such as multipotency and proliferation ability. In this study, we show that the c-Mpl signal, which is related to the maintenance of hematopoietic stem cells, has an important effect on the proliferation and differentiation ability of MSCs. Utilizing a co-culture system comprising MSCs and HSCs, it is suggested that signaling from hematopoietic cells to MSCs supports cell proliferation. Interestingly, the enhanced proliferation ability of the HSCs was decreased in c-Mpl knock-out HSCs (c-Mpl-KO). In addition, the MSCs co-cultured with c-Mpl-KO HSCs had reduced MSC marker expression (PDGFRa and Sca-1) compared to the MSCs co-cultured with c-Mpl-wild-type HSCs. These results suggest that a hematopoietic–mesenchymal signal exists, and that the state of the HSCs is important for the stability of MSC properties. 相似文献
16.
神经干细胞(neural stem cells,NSCs)移植治疗神经损伤被认为是具有潜在应用价值的手段,但其来源困难;骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)以其所具有的诸多优点,为神经损伤的治疗提供了一个新的思路。而BMSCs是否是通过作用于内源性的NSCs来促进神经修复,仍存在着争议。今采用海藻酸钙胶珠将NSCs包囊培养至一定大小的神经球后,再与BMSCs进行共培养,考察BMSCs对生长在海藻酸钙胶珠内的NSCs增殖与分化的作用,探讨BMSCs移植治疗神经疾病与损伤的作用机理。共培养过程中观察神经球结构的变化;共培养结束后计算NSCs的增殖倍数,对增殖条件下共培养的NSCs表型和多向分化潜能进行免疫荧光染色鉴定;对分化条件下共培养的NSCs向不同神经细胞分化的能力进行流式细胞仪检测。结果表明,BMSCs可使生长于支架内的NSCs迁出细胞球,对NSCs的增殖没有明显影响;但能够明显影响NSCs的分化,使其向少突胶质细胞分化的能力增加3倍,向星形胶质细胞分化的能力减弱1倍,而向神经元细胞分化的能力没有明显变化。BMSCs有可能是通过分泌某些因子增加了NSCs迁移及向少突胶质细胞分化的能力,从而促进神经损伤的修复。 相似文献
17.
Karolina Salwierak-Gona Pawe Pitek Magorzata Domowicz Mariola
widerek-Matysiak 《International journal of molecular sciences》2022,23(4)
Multiple sclerosis (MS) is a neurological disorder of autoimmune aetiology. Experimental therapies with the use of mesenchymal stem cells (MSCs) have emerged as a response to the unmet need for new treatment options. The unique immunomodulatory features of stem cells obtained from Wharton’s jelly (WJ-MSCs) make them an interesting research and therapeutic model. Most WJ-MSCs transplants for multiple sclerosis use intrathecal administration. We studied the effect of cerebrospinal fluid (CSF) obtained from MS patients on the secretory activity of WJ-MSCs and broaden this observation with WJ-MSCs interactions with human oligodendroglia cell line (OLs). Analysis of the WJ-MSCs secretory activity with use of Bio-Plex Pro™ Human Cytokine confirmed significant and diverse immunomodulatory potential. Our data reveal rich WJ-MSCs secretome with markedly increased levels of IL-6, IL-8, IP-10 and MCP-1 synthesis and a favourable profile of growth factors. The addition of MS CSF to the WJ-MSCs culture caused depletion of most proteins measured, only IL-12, RANTES and GM-CSF levels were increased. Most cytokines and chemokines decreased their concentrations in WJ-MSCs co-cultured with OLs, only eotaxin and RANTES levels were slightly increased. These results emphasize the spectrum of the immunomodulatory properties of WJ-MSCs and show how those effects can be modulated depending on the transplantation milieu. 相似文献
18.
Maria Mesuraca Clelia Nistic Nicola Lombardo Giovanna Lucia Piazzetta Nadia Lobello Emanuela Chiarella 《International journal of molecular sciences》2022,23(21)
Killian’s (antrochoanal) polyp is a unilateral nasal polypoid lesion of the maxillary sinus especially affecting children and young adults with unilateral nasal obstruction, pus discharge, and headache. Although its etiology is unclear, chronic inflammation, autoreactivity, allergies, and viral infections are implicated in its formation and development, causing nasal tissue remodeling. In this context, we isolated and cultured mesenchymal stem cells from surgical biopsies of three patients with Killian nasal polyp (KNP-MSCs) while healthy nasal tissue (HNT-MSCs) was used as control. Our results demonstrated that KNP-MSCs exhibited reduced cell proliferation compared to HNT-MSCs, and migrated less than the control, showing a partial epithelial phenotype with low mRNA levels of I-CAM and a significant increase of E-cad. Subsequently, both MSCs were induced to osteoblastic or adipocyte differentiation for up to 20 days. KNP-MSCs underwent to differentiate into osteoblasts but exhibited reduced ALP activity and calcium deposits and low mRNA levels of osteogenesis-associated genes compared to osteogenic induced-HNT-MSCs. Conversely, KNP-MSCs and HNT-MSCs have shown the same adipogenic differentiation potential, with a similar lipid droplet amount, adipocyte gene expression, and triacylglycerols content. Taken together, these results first demonstrated the cellular and molecular characterization of MSCs derived from the Killian nasal polyp. 相似文献
19.
Zhifa Wang Zhijin Li Taiqiang Dai Chunlin Zong Yanpu Liu Bin Liu 《International journal of molecular sciences》2016,17(2)
To determine the effect of adipose-derived stem cells (ADSCs) added to bone marrow-derived mesenchymal stem cell (MSC) sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID) mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration. 相似文献
20.
Deying Zhang Xing Liu Jinpu Peng Dawei He Tao Lin Jing Zhu Xuliang Li Yuanyuan Zhang Guanghui Wei 《International journal of molecular sciences》2014,15(8):13151-13165
Non-obstructive azoospermia is the most challenging type of male infertility. Stem cell based therapy provides the potential to enhance the recovery of spermatogenesis following cancer therapy. Bone marrow-derived mesenchymal stem cells (BMSCs) possess the potential to differentiate or trans-differentiate into multi-lineage cells, secrete paracrine factors to recruit the resident stem cells to participate in tissue regeneration, or fuse with the local cells in the affected region. In this study, we tested whether spermatogenically-induced BMSCs can restore spermatogenesis after administration of an anticancer drug. Allogeneic BMSCs were co-cultured in conditioned media derived from cultured testicular Sertoli cells in vitro, and then induced stem cells were transplanted into the seminiferous tubules of a busulfan-induced azoospermatic rat model for 8 weeks. The in vitro induced BMSCs exhibited specific spermatogonic gene and protein markers, and after implantation the donor cells survived and located at the basement membranes of the recipient seminiferous tubules, in accordance with what are considered the unique biological characteristics of spermatogenic stem cells. Molecular markers of spermatogonial stem cells and spermatogonia (Vasa, Stella, SMAD1, Dazl, GCNF, HSP90α, integrinβ1, and c-kit) were expressed in the recipient testis tissue. No tumor mass, immune response, or inflammatory reaction developed. In conclusion, BMSCs might provide the potential to trans-differentiate into spermatogenic-like-cells, enhancing endogenous fertility recovery. The present study indicates that BMSCs might offer alternative treatment for the patients with azoospermatic infertility after cancer chemotherapy. 相似文献