首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phostensin is encoded by KIAA1949. 5′-RACEanalysis has been used to identify the translation start site of phostensin mRNA, indicating that it encodes 165 amino acids with an apparent molecular weight of 26 kDa on SDS-PAGE. This low-molecular-weight phostensin is present in human peripheral blood mononuclear cells and many leukemic cell lines. Phostensin is a protein phosphatase-1(PP1) binding protein. It also contains one actin-binding motif at its C-terminal region and binds to the pointed ends of actin filaments, modulating actin dynamics. In the current study, a high-molecular-weight phostensin is identified by using immunoprecipitationin combination with a proteomic approach. This new species of phostensin is also encoded by KIAA1949 and consists of 613 amino acids with an apparent molecular weight of 110 kDa on SDS-PAGE. The low-molecular-weight and high-molecular-weight phostensins were named as phostensin-α and phostensin-β, respectively. Although phostensin-α is the C-terminal region of phostensin-β, it is not degraded from phostensin-β. Phostensin-β is capable of associating with PP1 and actin filaments, and is present in many cell lines.  相似文献   

2.
Growing cases of patients reported have shown a potential relationship between (severe acute respiratory syndrome coronavirus 2) SARS-CoV-2 infection and Parkinson’s disease (PD). However, it is unclear whether there is a molecular link between these two diseases. Alpha-synuclein (α-Syn), an aggregation-prone protein, is considered a crucial factor in PD pathology. In this study, bioinformatics analysis confirmed favorable binding affinity between α-Syn and SARS-CoV-2 spike (S) protein and nucleocapsid (N) protein, and direct interactions were further verified in HEK293 cells. The expression of α-Syn was upregulated and its aggregation was accelerated by S protein and N protein. It was noticed that SARS-CoV-2 proteins caused Lewy-like pathology in the presence of α-Syn overexpression. By confirming that SARS-CoV-2 proteins directly interact with α-Syn, our study offered new insights into the mechanism underlying the development of PD on the background of COVID-19.  相似文献   

3.
The opening of protein substrates during degradation by proteases and the corresponding exposure of their internal peptide bonds for a successful enzymatic attack, the so-called demasking effect, was studied for β-lactoglobulin (β-LG) and β-casein (β-CN) hydrolyzed by trypsin. Demasking was estimated by monitoring the redshift in intrinsic tryptophan fluorescence, characterizing the accessibility of polypeptide chains to aqueous medium. The secondary masking of intermediate polypeptides, giving an inverse effect to demasking, caused a restriction of the substrate opening. This led to the limitations in the red shift of fluorescence and the degree of hydrolysis with a long time of hydrolysis of β-LG and β-CN at a constant substrate concentration and reduced trypsin concentrations. The proposed proteolysis model included demasking of initially masked bonds in the protein globule or micelle, secondary masking of intermediate polypeptides, and their subsequent slow demasking. The hydrolysis of peptide bonds was modeled taking into account different hydrolysis rate constants for different peptide bonds. It was demonstrated that demasking competes with secondary masking, which is less noticeable at high trypsin concentrations. Modeling of proteolysis taking into account two demasking processes and secondary masking made it possible to simulate kinetic curves consistent with the experimental data.  相似文献   

4.
A mangrove soil metagenomic library was constructed and a β-agarase gene designated as AgaML was isolated by functional screening. The gene encoded for a 659-amino-acids polypeptide with an estimated molecular mass of 71.6 kDa. The deduced polypeptide sequences of AgaML showed the highest identity of 73% with the glycoside hydrolase family 16 β-agarase from Microbulbifer agarilyticus in the GenBank database. AgaML was cloned and highly expressed in Escherichia coli BL21(DE3). The purified recombinant protein, AgaML, showed optimal activity at 50 °C and pH 7.0. The kinetic parameters of Km and Vmax values toward agarose were 4.6 mg·mL−1 and 967.5 μM·min−1·mg−1, respectively. AgaML hydrolyzed the β-1,4-glycosidic linkages of agar to generate neoagarotetraose (NA4) and neoagarohexaose (NA6) as the main products. These characteristics suggest that AgaML has potential application in cosmetic, pharmaceuticals and food industries.  相似文献   

5.
Prolamins constitute a unique class of seed storage proteins, present only in grasses. In the lumen of the endoplasmic reticulum (ER), prolamins form large, insoluble heteropolymers termed protein bodies (PB). In transgenic Arabidopsis (Arabidopsis thaliana) leaves, the major maize (Zea mays) prolamin, 27 kDa γ-zein (27γz), assembles into insoluble disulfide-linked polymers, as in maize endosperm, forming homotypic PB. The 16 kDa γ-zein (16γz), evolved from 27γz, instead forms disulfide-bonded dispersed electron-dense threads that enlarge the ER lumen without assembling into PB. We have investigated whether the peculiar features of 16γz are also maintained during transgenic seed development. We show that 16γz progressively changes its electron microscopy appearance during transgenic Arabidopsis embryo maturation, from dispersed threads to PB-like, compact structures. In mature seeds, 16γz and 27γz PBs appear very similar. However, when mature embryos are treated with a reducing agent, 27γz is fully solubilized, as expected, whereas 16γz remains largely insoluble also in reducing conditions and drives insolubilization of the ER chaperone BiP. These results indicate that 16γz expressed in the absence of the other zein partners forms aggregates in a storage tissue, strongly supporting the view that 16γz behaves as the unassembled subunit of a large heteropolymer, the PB, and could have evolved successfully only following the emergence of the much more structurally self-sufficient 27γz.  相似文献   

6.
The three members (GADD45α, GADD45β, and GADD45γ) of the growth arrest and DNA damage-inducible 45 (GADD45) protein family are involved in a myriad of diversified cellular functions. With the aim of unravelling analogies and differences, we performed comparative biochemical and biophysical analyses on the three proteins. The characterization and quantification of their binding to the MKK7 kinase, a validated functional partner of GADD45β, indicate that GADD45α and GADD45γ are strong interactors of the kinase. Despite their remarkable sequence similarity, the three proteins present rather distinct biophysical properties. Indeed, while GADD45β and GADD45γ are marginally stable at physiological temperatures, GADD45α presents the Tm value expected for a protein isolated from a mesophilic organism. Surprisingly, GADD45α and GADD45β, when heated, form high-molecular weight species that exhibit features (ThT binding and intrinsic label-free UV/visible fluorescence) proper of amyloid-like aggregates. Cell viability studies demonstrate that they are endowed with a remarkable toxicity against SHSY-5Y and HepG2 cells. The very uncommon property of GADD45β to form cytotoxic species in near-physiological conditions represents a puzzling finding with potential functional implications. Finally, the low stability and/or the propensity to form toxic species of GADD45 proteins constitute important features that should be considered in interpreting their many functions.  相似文献   

7.
β-arrestins were initially identified to desensitize and internalize G-protein-coupled receptors (GPCRs). Receptor-bound β-arrestins also initiate a second wave of signaling by scaffolding mitogen-activated protein kinase (MAPK) signaling components, MAPK kinase kinase, MAPK kinase, and MAPK. In particular, β-arrestins facilitate ERK1/2 or JNK3 activation by scaffolding signal cascade components such as ERK1/2-MEK1-cRaf or JNK3-MKK4/7-ASK1. Understanding the precise molecular and structural mechanisms of β-arrestin-mediated MAPK scaffolding assembly would deepen our understanding of GPCR-mediated MAPK activation and provide clues for the selective regulation of the MAPK signaling cascade for therapeutic purposes. Over the last decade, numerous research groups have attempted to understand the molecular and structural mechanisms of β-arrestin-mediated MAPK scaffolding assembly. Although not providing the complete mechanism, these efforts suggest potential binding interfaces between β-arrestins and MAPK signaling components and the mechanism for MAPK signal amplification by β-arrestin-mediated scaffolding. This review summarizes recent developments of cellular and molecular works on the scaffolding mechanism of β-arrestin for MAPK signaling cascade.  相似文献   

8.
S100B is an astrocytic extracellular Ca2+-binding protein implicated in Alzheimer’s disease, whose role as a holdase-type chaperone delaying Aβ42 aggregation and toxicity was recently uncovered. Here, we employ computational biology approaches to dissect the structural details and dynamics of the interaction between S100B and Aβ42. Driven by previous structural data, we used the Aβ25–35 segment, which recapitulates key aspects of S100B activity, as a starting guide for the analysis. We used Haddock to establish a preferred binding mode, which was studied with the full length Aβ using long (1 μs) molecular dynamics (MD) simulations to investigate the structural dynamics and obtain representative interaction complexes. From the analysis, Aβ-Lys28 emerged as a key candidate for stabilizing interactions with the S100B binding cleft, in particular involving a triad composed of Met79, Thr82 and Glu86. Binding constant calculations concluded that coulombic interactions, presumably implicating the Lys28(Aβ)/Glu86(S100B) pair, are very relevant for the holdase-type chaperone activity. To confirm this experimentally, we examined the inhibitory effect of S100B over Aβ aggregation at high ionic strength. In agreement with the computational predictions, we observed that electrostatic perturbation of the Aβ-S100B interaction decreases anti-aggregation activity. Altogether, these findings unveil features relevant in the definition of selectivity of the S100B chaperone, with implications in Alzheimer’s disease.  相似文献   

9.
Various landmark studies have revealed structures and functions of the Sec61/SecY complex in all domains of live demonstrating the conserved nature of this ancestral protein translocase. While the bacterial homolog of the Sec61 complex resides in the plasma membrane, the eukaryotic counterpart manages the transfer of precursor proteins into or across the membrane of the endoplasmic reticulum (ER). Sec61 complexes are accompanied by a set of dynamically recruited auxiliary proteins assisting the transport of certain precursor polypeptides. TRAP and Sec62/Sec63 are two auxiliary protein complexes in mammalian cells that have been characterized by structural and biochemical methods. Using these ER membrane protein complexes for our proof-of-concept study, we aimed to detect interactions of membrane proteins in living mammalian cells under physiological conditions. Bimolecular luminescence complementation and competition was used to demonstrate multiple protein–protein interactions of different topological layouts. In addition to the interaction of the soluble catalytic and regulatory subunits of the cytosolic protein kinase A, we detected interactions of ER membrane proteins that either belong to the same multimeric protein complex (intra-complex interactions: Sec61α–Sec61β, TRAPα–TRAPβ) or protein complexes in juxtaposition (inter-complex interactions: Sec61α–TRAPα, Sec61α–Sec63, and Sec61β–Sec63). In the process, we established further control elements like synthetic peptide complementation for expression profiling of fusion constructs and protease-mediated reporter degradation demonstrating the cytosolic localization of a reporter complementation. Ease of use and flexibility of the approach presented here will spur further research regarding the dynamics of protein–protein interactions in response to changing cellular conditions in living cells.  相似文献   

10.
A ceramide deficiency in the stratum corneum (SC) is an essential etiologic factor for the dry and barrier-disrupted skin of patients with atopic dermatitis (AD). Previously, we reported that sphingomyelin (SM) deacylase, which hydrolyzes SM and glucosylceramide at the acyl site to yield their lysoforms sphingosylphosphorylcholine (SPC) and glucosylsphingosine, respectively, instead of ceramide and/or acylceramide, is over-expressed in AD skin and results in a ceramide deficiency. Although the enzymatic properties of SM deacylase have been clarified, the enzyme itself remains unidentified. In this study, we purified and characterized SM deacylase from rat skin. The activities of SM deacylase and acid ceramidase (aCDase) were measured using SM and ceramide as substrates by tandem mass spectrometry by monitoring the production of SPC and sphingosine, respectively. Levels of SM deacylase activity from various rat organs were higher in the order of skin > lung > heart. By successive chromatography using Phenyl-5PW, Rotofor, SP-Sepharose, Superdex 200 and Shodex RP18-415, SM deacylase was purified to homogeneity with a single band of an apparent molecular mass of 43 kDa with an enrichment of > 14,000-fold. Analysis by MALDI-TOF MS/MS using a protein spot with SM deacylase activity separated by 2D-SDS-PAGE allowed its amino acid sequence to be determined and identified as the β-subunit of aCDase, which consists of α- and β-subunits linked by amino bonds and a single S-S bond. Western blotting of samples treated with 2-mercaptoethanol revealed that, whereas recombinant human aCDase was recognized by antibodies to the α-subunit at ~56 kDa and ~13 kDa and the β-subunit at ~43 kDa, the purified SM deacylase was detectable only by the antibody to the β-subunit at ~43 kDa. Breaking the S-S bond of recombinant human aCDase with dithiothreitol elicited the activity of SM deacylase with ~40 kDa upon gel chromatography. These results provide new insights into the essential role of SM deacylase expressed as an aCDase-degrading β-subunit that evokes the ceramide deficiency in AD skin.  相似文献   

11.
Recently, the number of patients infected by drug-resistant pathogenic microbes has increased remarkably worldwide, and a number of studies have reported new antibiotics from natural sources. Among them, chitosan, with a high molecular weight and α-conformation, exhibits potent antimicrobial activity, but useful applications as an antibiotic are limited by its cytotoxicity and insolubility at physiological pH. In the present study, the antibacterial activity of low molecular weight water-soluble (LMWS) α-chitosan (α1k, α5k, and α10k with molecular masses of 1, 5, and 10 kDa, respectively) and β-chitosan (β1k, β5k, and β10k) was compared using a range of pathogenic bacteria containing drug-resistant bacteria isolated from patients at different pH. Interestingly, β5k and β10k exhibited potent antibacterial activity, even at pH 7.4, whereas only α10k was effective at pH 7.4. The active target of β-chitosan is the bacterial membrane, where the leakage of calcein is induced in artificial PE/PG vesicles, bacterial mimetic membrane. Moreover, scanning electron microscopy showed that they caused significant morphological changes on the bacterial surfaces. An in vivo study utilizing a bacteria-infected mouse model found that LMWS β-chitosan could be used as a candidate in anti-infective or wound healing therapeutic applications.  相似文献   

12.
Adenoviruses contain dsDNA covalently linked to a terminal protein (TP) at the 5′end. TP plays a pivotal role in replication and long-lasting infectivity. TP has been reported to contain a nuclear localisation signal (NLS) that facilitates its import into the nucleus. We studied the potential NLS motifs within TP using molecular and cellular biology techniques to identify the motifs needed for optimum nuclear import. We used confocal imaging microscopy to monitor the localisation and nuclear association of GFP fusion proteins. We identified two nuclear localisation signals, PV(R)6VP and MRRRR, that are essential for fully efficient TP nuclear entry in transfected cells. To study TP–host interactions further, we expressed TP in Escherichia coli (E. coli). Nuclear uptake of purified protein was determined in digitonin-permeabilised cells. The data confirmed that nuclear uptake of TP requires active transport using energy and shuttling factors. This mechanism of nuclear transport was confirmed when expressed TP was microinjected into living cells. Finally, we uncovered the nature of TP binding to host nuclear shuttling proteins, revealing selective binding to Imp β, and a complex of Imp α/β but not Imp α alone. TP translocation to the nucleus could be inhibited using selective inhibitors of importins. Our results show that the bipartite NLS is required for fully efficient TP entry into the nucleus and suggest that this translocation can be carried out by binding to Imp β or Imp α/β. This work forms the biochemical foundation for future work determining the involvement of TP in nuclear delivery of adenovirus DNA.  相似文献   

13.
A carrageenan-degrading marine Cellulophaga lytica strain N5-2 was isolated from the sediment of carrageenan production base. A κ-carrageenase (EC 3.2.1.83) with high activity was purified to electrophoretic homogeneity from the culture supernatant by a procedure of ammonium sulfate precipitation, dialyzing and gel filtration on SephadexG-200 and SephadexG-75. The purified enzyme was verified as a single protein on SDS-PAGE, and whose molecular weight was 40.8 kDa. The κ-carrageenase yielded a high activity of 1170 U/mg protein. For κ-carrageenase activity, the optimum temperature and pH were 35 °C and pH 7.0, respectively. The enzyme was stable at 40 °C for at least 2.5 h. The enzyme against κ-carrageenan gave a Km value of 1.647 mg/mL and a Vmax value of 8.7 μmol/min/mg when the reaction was carried out at 35 °C and pH 7.0. The degradation products of the κ-carrageenase were analyzed by thin layer chromatography (TLC), high performance liquid chromatography (HPLC), electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS) and 13C-NMR spectroscopy, and the results indicated that the enzyme was specific of the β-1,4 linkage and hydrolyzed κ-carrageenan into κ-neocarraoctaose-sulfate and κ-neocarrahexaose-sulfate first, and then broke κ-neocarraoctaose-sulfate into κ-neocarrabiose-sulfate and κ-neocarrahexaose-sulfate.  相似文献   

14.
The gene encoding the β2-adrenergic receptor (β2-AR) is polymorphic, which results in possible differences in a primary structure of this protein. It has been shown that certain types of polymorphisms are correlated with some clinical features of asthma, including airways reactivity, whereas the influence of other is not yet understood. Among polymorphisms affecting amino acids at positions 16, 27, 34, 164 and 220, the latter three are present in the crystal structure of β2-AR, which facilitates studying them by means of molecular dynamics simulations. The current study was focused on investigating to what extent the three polymorphisms of β2-AR (i.e., Val34Met, Thr164Ile and Ser220Cys) affect the interaction of β2-AR with its natural molecular environment which includes: lipid bilayer (in the case of all three polymorphs) and Gs protein (which participates in β2-AR-mediated signaling; in the case of Ser220Cys). We have designed and carried out a series of molecular dynamics simulations at different level of resolution (i.e., either coarse-grained or atomistic simulations), accompanied by thermodynamic integration protocol, in order to identify potential polymorphism-induced alterations in structural, conformational or energetic features of β2-AR. The results indicate the lack of significant differences in the case of energies involved in the β2-AR-lipid bilayer interactions. Some differences have been observed when considering the polymorphism-induced alterations in β2-AR-Gs protein binding, but their magnitude is also negligible in relation to the absolute free energy difference correlated with the β2-AR-Gs affinity. The Val34Met and Thr164Ile polymorphisms are weakly correlated with alteration of the conformational features of the receptor around polymorphic sites. On the contrary, it has been concluded that the Ser220Cys polymorphism is correlated with several structural alterations located in the intracellular region of β2-AR, which can induce G-protein binding and, subsequently, the polymorphism-correlated therapeutic responses. More precisely, these alterations involve vicinity of intracellular loops and, in part, are the direct consequence of disturbed interactions of Ser/Cys220 sidechain within 5th transmembrane domain. Structurally, the dynamic structure exhibited by the β2-ARSer220 polymorph is closer to the Gs-compatible structure of β2-AR.  相似文献   

15.
Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high β-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain β-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with β-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain β-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods.  相似文献   

16.
Hundreds of millions of people around the world have been affected by Type 2 diabetes (T2D) which is a metabolic disorder. Clinical research has revealed T2D as a possible risk factor for Alzheimer’s disease (AD) development (and vice versa). Amyloid-β (Aβ) and human islet amyloid polypeptide are the main pathological species in AD and T2D, respectively. However, the mechanisms by which these two amyloidogenic peptides co-aggregate are largely uninvestigated. Herein, for the first time, we present the cross-seeding between Amylin1-37 and Aβ40 considering the particular effect of the histidine tautomerism at atomic resolution applying the all-atom molecular dynamics (MD) simulations for heterodimeric complexes. The results via random seed MD simulations indicated that the Aβ40(δδδ) isomer in cross-talking with Islet(ε) and Islet(δ) isomers could retain or increase the β-sheet content in its structure that may make it more prone to further aggregation and exhibit higher toxicity. The other tautomeric isomers which initially did not have a β-sheet structure in their monomeric forms did not show any generated β-sheet, except for one seed of the Islet(ε) and Aβ40(εεε) heterodimers complex that displayed a small amount of formed β-sheet. This computational research may provide a different point of view to examine all possible parameters that may contribute to the development of AD and T2D and provide a better understanding of the pathological link between these two severe diseases.  相似文献   

17.
Amyloid fibrils are supramolecular protein assemblies represented by a cross-β structure and fibrous morphology, whose structural architecture has been previously investigated. While amyloid fibrils are basically a main-chain-dominated structure consisting of a backbone of hydrogen bonds, side-chain interactions also play an important role in determining their detailed structures and physicochemical properties. In amyloid fibrils comprising short peptide segments, a steric zipper where a pair of β-sheets with side chains interdigitate tightly is found as a fundamental motif. In amyloid fibrils comprising longer polypeptides, each polypeptide chain folds into a planar structure composed of several β-strands linked by turns or loops, and the steric zippers are formed locally to stabilize the structure. Multiple segments capable of forming steric zippers are contained within a single protein molecule in many cases, and polymorphism appears as a result of the diverse regions and counterparts of the steric zippers. Furthermore, the β-solenoid structure, where the polypeptide chain folds in a solenoid shape with side chains packed inside, is recognized as another important amyloid motif. While side-chain interactions are primarily achieved by non-polar residues in disease-related amyloid fibrils, the participation of hydrophilic and charged residues is prominent in functional amyloids, which often leads to spatiotemporally controlled fibrillation, high reversibility, and the formation of labile amyloids with kinked backbone topology. Achieving precise control of the side-chain interactions within amyloid structures will open up a new horizon for designing useful amyloid-based nanomaterials.  相似文献   

18.
Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable β-sheet enriched intermediates, which are stabilized by intermolecular interactions with other β-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders.  相似文献   

19.
G protein activation represents an early key event in the complex GPCR signal transduction process and is usually studied by label-dependent methods targeting specific molecular events. However, the constrained environment of such “invasive” techniques could interfere with biological processes. Although histamine receptors (HRs) represent (evolving) drug targets, their signal transduction is not fully understood. To address this issue, we established a non-invasive dynamic mass redistribution (DMR) assay for the human H1–4Rs expressed in HEK cells, showing excellent signal-to-background ratios above 100 for histamine (HIS) and higher than 24 for inverse agonists with pEC50 values consistent with literature. Taking advantage of the integrative nature of the DMR assay, the involvement of endogenous Gαq/11, Gαs, Gα12/13 and Gβγ proteins was explored, pursuing a two-pronged approach, namely that of classical pharmacology (G protein modulators) and that of molecular biology (Gα knock-out HEK cells). We showed that signal transduction of hH1–4Rs occurred mainly, but not exclusively, via their canonical Gα proteins. For example, in addition to Gαi/o, the Gαq/11 protein was proven to contribute to the DMR response of hH3,4Rs. Moreover, the Gα12/13 was identified to be involved in the hH2R mediated signaling pathway. These results are considered as a basis for future investigations on the (patho)physiological role and the pharmacological potential of H1–4Rs.  相似文献   

20.
Disturbance of protein kinase activity may result in dramatic consequences that often lead to cancer development and progression. In tumors of blood origin, both tyrosine kinases and serine/threonine kinases are altered by different types of mutations, critically regulating cancer hallmarks. CK1α and CK2 are highly conserved, ubiquitously expressed and constitutively active pleiotropic kinases, which participate in multiple biological processes. The involvement of these kinases in solid and blood cancers is well documented. CK1α and CK2 are overactive in multiple myeloma, leukemias and lymphomas. Intriguingly, they are not required to the same degree for the viability of normal cells, corroborating the idea of “druggable” kinases. Different to other kinases, mutations on the gene encoding CK1α and CK2 are rare or not reported. Actually, these two kinases are outside the paradigm of oncogene addiction, since cancer cells’ dependency on these proteins resembles the phenomenon of “non-oncogene” addiction. In this review, we will summarize the general features of CK1α and CK2 and the most relevant oncogenic and stress-related signaling nodes, regulated by kinase phosphorylation, that may lead to tumor progression. Finally, we will report the current data, which support the positioning of these two kinases in the therapeutic scene of hematological cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号