首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular vesicles (EVs) are small vesicles ranging from 20–200 nm to 10 μm in diameter that are discharged and taken in by many different types of cells. Depending on the nature and quantity of their content—which generally includes proteins, lipids as well as microRNAs (miRNAs), messenger-RNA (mRNA), and DNA—these particles can bring about functional modifications in the receiving cells. During pregnancy, placenta and/or fetal-derived EVs have recently been isolated, eliciting interest in discovering their clinical significance. To date, various studies have associated variations in the circulating levels of maternal and fetal EVs and their contents, with complications including gestational diabetes and preeclampsia, ultimately leading to adverse pregnancy outcomes. Furthermore, EVs have also been identified as messengers and important players in viral infections during pregnancy, as well as in various congenital malformations. Their presence can be detected in the maternal blood from the first trimester and their level increases towards term, thus acting as liquid biopsies that give invaluable insight into the status of the feto-placental unit. However, their exact roles in the metabolic and vascular adaptations associated with physiological and pathological pregnancy is still under investigation. Analyzing peer-reviewed journal articles available in online databases, the purpose of this review is to synthesize current knowledge regarding the utility of quantification of pregnancy related EVs in general and placental EVs in particular as non-invasive evidence of placental dysfunction and adverse pregnancy outcomes, and to develop the current understanding of these particles and their applicability in clinical practice.  相似文献   

2.
Angiogenesis is one of the main processes that coordinate the biological events leading to a successful pregnancy, and its imbalance characterizes several pregnancy-related diseases, including preeclampsia. Intracellular interactions via extracellular vesicles (EVs) contribute to pregnancy’s physiology and pathophysiology, and to the fetal–maternal interaction. The present review outlines the implications of EV-mediated crosstalk in the angiogenic process in healthy pregnancy and its dysregulation in preeclampsia. In particular, the effect of EVs derived from gestational tissues in pro and anti-angiogenic processes in the physiological and pathological setting is described. Moreover, the application of EVs from placental stem cells in the clinical setting is reported.  相似文献   

3.
4.
We tested the pro-angiogenic and anti-inflammatory effects of human placenta-derived mesenchymal stromal cells (hPDMSCs)-derived conditioned media (CM) on a mouse model of preeclampsia (PE), a severe human pregnancy-related syndrome characterized by maternal hypertension, proteinuria, endothelial damage, inflammation, often associated with fetal growth restriction (FGR). At d11 of pregnancy, PE was induced in pregnant C57BL/6N mice by bacterial lipopolysaccharide (LPS) intravenous injection. At d12, 300 μL of unconditioned media (control group) or 300 μL PDMSCs-CM (CM group) were injected. Maternal systolic blood pressure was measured from 9 to 18 days of pregnancy. Urine protein content were analyzed at days 12, 13, and 17 of pregnancy. At d19, mice were sacrificed. Number of fetuses, FGR, fetal reabsorption, and placental weight were evaluated. Placentae were analyzed for sFlt-1, IL-6, and TNF-α gene and protein expressions. No FGR and/or reabsorbed fetuses were delivered by PDMSCs-CM-treated PE mice, while five FGR fetuses were found in the control group accompanied by a lower placental weight. PDMSCs-CM injection significantly decreased maternal systolic blood pressure, proteinuria, sFlt-1, IL-6, and TNF-α levels in PE mice. Our data indicate that hPDMSCs-CM can reverse PE-like features during pregnancy, suggesting a therapeutic role for hPDMSCs for the treatment of preeclampsia.  相似文献   

5.
Tumor necrosis factor-alpha (TNF-α) is a multifunctional Th1 cytokine and one of the most important inflammatory cytokines. In pregnancy, TNF-α influences hormone synthesis, placental architecture, and embryonic development. It was also shown that increased levels of TNF-α are associated with pregnancy loss and preeclampsia. Increased TNF-α levels in complicated pregnancy draw attention to trophoblast biology, especially migratory activity, syncytialisation, and endocrine function. Additionally, elevated TNF-α levels may affect the maternal-fetal relationship by altering the secretory profile of placental immunomodulatory factors, which in turn affects maternal immune cells. There is growing evidence that metabolic/pro-inflammatory cytokines can program early placental functions and growth in the first trimester of pregnancy. Furthermore, early pregnancy placenta has a direct impact on fetal development and maternal immune system diseases that release inflammatory (e.g., TNF-α) and immunomodulatory factors, such as chronic inflammatory rheumatic, gastroenterological, or dermatological diseases, and may result in an abnormal release of cytokines and chemokines in syncytiotrophoblasts. Pregnancy poses a challenge in the treatment of chronic disease in patients who plan to have children. The activity of the disease, the impact of pregnancy on the course of the disease, and the safety of pharmacotherapy, including anti-rheumatic agents, in pregnancy should be considered.  相似文献   

6.
Preeclampsia is a pregnancy-specific disease of high prevalence characterized by the onset of hypertension, among other maternal or fetal signs. Its etiopathogenesis remains elusive, but it is widely accepted that abnormal placentation results in the release of soluble factors that cause the clinical manifestations of the disease. An increased level of soluble endoglin (sEng) in plasma has been proposed to be an early diagnostic and prognostic biomarker of this disease. A pathogenic function of sEng involving hypertension has also been reported in several animal models with high levels of plasma sEng not directly dependent on pregnancy. The aim of this work was to study the functional effect of high plasma levels of sEng in the pathophysiology of preeclampsia in a model of pregnant mice, in which the levels of sEng in the maternal blood during pregnancy replicate the conditions of human preeclampsia. Our results show that wild type pregnant mice carrying human sEng-expressing transgenic fetuses (fWT(hsEng+)) present high plasma levels of sEng with a timing profile similar to that of human preeclampsia. High plasma levels of human sEng (hsEng) are associated with hypertension, proteinuria, fetal growth restriction, and the release of soluble factors to maternal plasma. In addition, fWT(hsEng+) mice also present placental alterations comparable to those caused by the poor remodeling of the spiral arteries characteristic of preeclampsia. In vitro and ex vivo experiments, performed in a human trophoblast cell line and human placental explants, show that sEng interferes with trophoblast invasion and the associated pseudovasculogenesis, a process by which cytotrophoblasts switch from an epithelial to an endothelial phenotype, both events being related to remodeling of the spiral arteries. Our findings provide a novel and useful animal model for future research in preeclampsia and reveal a much more relevant role of sEng in preeclampsia than initially proposed.  相似文献   

7.
Pregnancy complications are a major cause of fetal and maternal morbidity and mortality in humans. The majority of pregnancy complications initiate due to abnormal placental development and function. During the last decade, the role of microRNAs (miRNAs) in regulating placental and fetal development has become evident. Dysregulation of miRNAs in the placenta not only affects placental development and function, but these miRNAs can also be exported to both maternal and fetal compartments and affect maternal physiology and fetal growth and development. Due to their differential expression in the placenta and maternal circulation during pregnancy complications, miRNAs can be used as diagnostic biomarkers. However, the differential expression of a miRNA in the placenta may not always be reflected in maternal circulation, which makes it difficult to find a reliable biomarker for placental dysfunction. In this review, we provide an overview of differentially expressed miRNAs in the placenta and/or maternal circulation during preeclampsia (PE) and intrauterine growth restriction (IUGR), which can potentially serve as biomarkers for prediction or diagnosis of pregnancy complications. Using different bioinformatics tools, we also identified potential target genes of miRNAs associated with PE and IUGR, and the role of miRNA-mRNA networks in the regulation of important signaling pathways and biological processes.  相似文献   

8.
Preeclampsia is one of the three leading causes of maternal morbidity and mortality worldwide. It afflicts 2–8% of pregnancies and is the most common cause of gestational hypertension. This article is focused on nuclear factor kappa B (NF-κB), its role in normal and pathological spiral arteries remodelling and development of preeclampsia, with evaluation if it is a promising therapeutic target. NF-κB is a key mediator of placentation. Since insemination, it stimulates production of proinflammatory cytokines by the uterine epithelium, which leads to activation of macrophages, uterine natural killer cells (uNKs), and other leukocytes. The trophoblast/uNK/macrophage crosstalk is crucial for implantation and spiral arteries remodeling, and NF-κB regulates that process through modification of cytokine expression, as well as cell phenotype and function. In the course of preeclampsia, the remodeling processes is disturbed by excessive inflammation and increased NF-κB activation. The pathological remodeling leads to uteroplacental dysfunction, release of proinflammatory cytokines into the maternal circulation, endothelial stress, and development of preeclampsia. The analysis of genetic and environmental inductors of NF-κB helps to distinguish preeclampsia risk groups. Furthermore, a selective inhibition of NF-κB or NF-κB activating pathways alleviates symptoms of preeclampsia in rat models; therefore, this could be an efficient therapeutic option.  相似文献   

9.
Cell–cell communication is an essential mechanism for the maintenance and development of various organs, including the female reproductive system. Today, it is well-known that the function of the female reproductive system and successful pregnancy are related to appropriate follicular growth, oogenesis, implantation, embryo development, and proper fertilization, dependent on the main regulators of cellular crosstalk, exosomes. During exosome synthesis, selective packaging of different factors into these vesicles happens within the originating cells. Therefore, exosomes contain both genetic and proteomic data that could be applied as biomarkers or therapeutic targets in pregnancy-associated disorders or placental functions. In this context, the present review aims to compile information about the potential exosomes with key molecular cargos that are dysregulated in female reproductive diseases which lead to infertility, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), Asherman syndrome, endometriosis, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia, as well as signaling pathways related to the regulation of the reproductive system and pregnancy outcome during these pathological conditions. This review might help us realize the etiology of reproductive dysfunction and improve the early diagnosis and treatment of the related complications.  相似文献   

10.
Proinflammatory cytokines are produced in pregnancy in response to the invading pathogens and/or nonmicrobial causes such as damage-associated molecules and embryonic semi-allogenic antigens. While inflammation is essential for a successful pregnancy, an excessive inflammatory response is implicated in several pathologies including pre-eclampsia (PE). This review focuses on the proinflammatory cytokine macrophage migration inhibitory factor (MIF), a critical regulator of the innate immune response and a major player of processes allowing normal placental development. PE is a severe pregnancy-related syndrome characterized by exaggerated inflammatory response and generalized endothelial damage. In some cases, usually of early onset, it originates from a maldevelopment of the placenta, and is associated with intrauterine growth restriction (IUGR) (placental PE). In other cases, usually of late onset, pre-pregnancy maternal diseases represent risk factors for the development of the disease (maternal PE). Available data suggest that low MIF production in early pregnancy could contribute to the abnormal placentation. The resulting placental hypoxia in later pregnancy could produce high release of MIF in maternal serum typical of placental PE. More studies are needed to understand the role of MIF, if any, in maternal PE.  相似文献   

11.
The road to low-dose aspirin therapy for the prevention of preeclampsia began in the 1980s with the discovery that there was increased thromboxane and decreased prostacyclin production in placentas of preeclamptic women. At the time, low-dose aspirin therapy was being used to prevent recurrent myocardial infarction and other thrombotic events based on its ability to selectively inhibit thromboxane synthesis without affecting prostacyclin synthesis. With the discovery that thromboxane was increased in preeclamptic women, it was reasonable to evaluate whether low-dose aspirin would be effective for preeclampsia prevention. The first clinical trials were very promising, but then two large multi-center trials dampened enthusiasm until meta-analysis studies showed aspirin was effective, but with caveats. Low-dose aspirin was most effective when started <16 weeks of gestation and at doses >100 mg/day. It was effective in reducing preterm preeclampsia, but not term preeclampsia, and patient compliance and patient weight were important variables. Despite the effectiveness of low-dose aspirin therapy in correcting the placental imbalance between thromboxane and prostacyclin and reducing oxidative stress, some aspirin-treated women still develop preeclampsia. Alterations in placental sphingolipids and hydroxyeicosatetraenoic acids not affected by aspirin, but with biologic actions that could cause preeclampsia, may explain treatment failures. Consideration should be given to aspirin’s effect on neutrophils and pregnancy-specific expression of protease-activated receptor 1, as well as additional mechanisms of action to prevent preeclampsia.  相似文献   

12.
Polyunsaturated fatty acids (PUFAs) are required to maintain the fluidity, permeability and integrity of cell membranes. Maternal dietary supplementation with ω-3 PUFAs during pregnancy has beneficial effects, including increased gestational length and reduced risk of pregnancy complications. Significant amounts of ω-3 docosahexaenoic acid (DHA) are transferred from maternal to fetal blood, hence ensuring high levels of DHA in the placenta and fetal bloodstream and tissues. Fetal DHA demand increases exponentially with gestational age, especially in the third trimester, due to fetal development. According to the World Health Organization (WHO) and the Food and Agriculture Organization of the United Nations (FAO), a daily intake of DHA is recommended during pregnancy. Omega-3 PUFAs are involved in several anti-inflammatory, pro-resolving and anti-oxidative pathways. Several placental disorders, such as intrauterine growth restriction, premature rupture of membranes (PROM) and preterm-PROM (pPROM), are associated with placental inflammation and oxidative stress. This pilot study reports on a preliminary evaluation of the significance of the daily DHA administration on PROM and pPROM events in healthy pregnant women. Further extensive clinical trials will be necessary to fully elucidate the correlation between DHA administration during pregnancy and PROM/pPROM occurrence, which is related in turn to gestational duration and overall fetal health.  相似文献   

13.
Epidemiological studies have demonstrated that women with a history of preeclampsia have a two-fold increased risk of developing cardiovascular diseases in later life. It is not known whether or not this risk is associated with angiotensin II receptor type 1 autoantibody (AT1-AA), an agonist acting via activation of AT1 receptor (AT1R), which is believed to be involved in the pathogenesis of preeclampsia. The objective of the present study was to confirm the hypothesis that AT1-AA exposure during pregnancy may change the maternal cardiac structure and increase the susceptibility of the postpartum heart to ischemia/reperfusion injury (IRI). In the present study, we first established a preeclampsia rat model by intravenous injection of AT1-AA extracted from the plasma of rats immunized with AT1R, observed the susceptibility of the postpartum maternal heart to IRI at 16 weeks postpartum using the Langendorff preparation, and examined the cardiac structure using light and transmission electron microscopy. The modeled animals presented with symptoms very similar to the clinical symptoms of human preeclampsia during pregnancy, including hypertension and proteinuria. The left ventricular weight (LVW) and left ventricular mass index (LVMI) in AT1-AA treatment group were significantly increased as compared with those of the control group (p < 0.01), although there was no significant difference in final weight between the two groups. AT1-AA acting on AT1R not only induced myocardial cell hypertrophy, mitochondrial swelling, cristae disorganization and collagen accumulation in the interstitium but affected the left ventricular (LV) function and delayed recovery from IRI. In contrast, co-treatment with AT1-AA + losartan completely blocked AT1-AA-induced changes in cardiac structure and function. These data indicate that the presence of AT1-AA during pregnancy was strongly associated with the markers of LV geometry changes and remodeling, and increased the cardiac susceptibility to IRI in later life of postpartum maternal rats.  相似文献   

14.
15.
The liver is one of the richest organs in mitochondria, serving as a hub for key metabolic pathways such as β-oxidation, the tricarboxylic acid (TCA) cycle, ketogenesis, respiratory activity, and adenosine triphosphate (ATP) synthesis, all of which provide metabolic energy for the entire body. Mitochondrial dysfunction has been linked to subcellular organelle dysfunction in liver diseases, particularly fatty liver disease. Acute fatty liver of pregnancy (AFLP) is a life-threatening liver disorder unique to pregnancy, which can result in serious maternal and fetal complications, including death. Pregnant mothers with this disease require early detection, prompt delivery, and supportive maternal care. AFLP was considered a mysterious illness and though its pathogenesis has not been fully elucidated, molecular research over the past two decades has linked AFLP to mitochondrial dysfunction and defects in fetal fatty-acid oxidation (FAO). Due to deficient placental and fetal FAO, harmful 3-hydroxy fatty acid metabolites accumulate in the maternal circulation, causing oxidative stress and microvesicular fatty infiltration of the liver, resulting in AFLP. In this review, we provide an overview of AFLP and mitochondrial FAO followed by discussion of how altered mitochondrial function plays an important role in the pathogenesis of AFLP.  相似文献   

16.
Irisin is a newly discovered exercise-mediated polypeptide hormone. Irisin levels increase during pregnancy however, women with preeclampsia (PE) have significantly lower levels of Irisin compared to women of healthy pregnancies. Even though many studies suggest a role of Irisin in pregnancy, its function in the human placenta is unclear. In the current study, we aimed to understand key roles of Irisin through its ability to protect against apoptosis is the preeclamptic placenta and in ex vivo and in vitro models of hypoxia/re-oxygenation (H/R) injury. Our studies show that Irisin prevents cell death by reducing pro-apoptotic signaling cascades, reducing cleavage of PARP to induce DNA repair pathways and reducing activity of Caspase 3. Irisin caused an increase in the levels of anti-apoptotic BCL2 to pro-apoptotic BAX and reduced ROS levels in an in vitro model of placental ischemia. Furthermore, we show that Irisin treatment acts through the Akt signaling pathway to prevent apoptosis and enhance cell survival. Our findings provide a novel understanding for the anti-apoptotic and pro-survival properties of Irisin in the human placenta under pathological conditions. This work yields new insights into placental development and disease and points towards intervention strategies for placental insufficiencies, such as PE, by protecting and maintaining placental function through inhibiting hypoxic ischemia-induced apoptosis.  相似文献   

17.
Gestational diabetes mellitus (GDM) is an obstetric complication that affects approximately 5–10% of all pregnancies worldwide. GDM is defined as any degree of glucose intolerance with onset or first recognition during pregnancy, and is characterized by exaggerated insulin resistance, a condition which is already pronounced in healthy pregnancies. Maternal hyperglycaemia ensues, instigating a ‘glucose stress’ response and concurrent systemic inflammation. Previous findings have proposed that both placental and visceral adipose tissue play a part in instigating and mediating this low-grade inflammatory response which involves altered infiltration, differentiation and activation of maternal innate and adaptive immune cells. The resulting maternal immune dysregulation is responsible for exacerbation of the condition and a further reduction in maternal insulin sensitivity. GDM pathology results in maternal and foetal adverse outcomes such as increased susceptibility to diabetes mellitus development and foetal neurological conditions. A clearer understanding of how these pathways originate and evolve will improve therapeutic targeting. In this review, we will explore the existing findings describing maternal immunological adaption in GDM in an attempt to highlight our current understanding of GDM-mediated immune dysregulation and identify areas where further research is required.  相似文献   

18.
19.
Probiotics are live microorganisms that induce health benefits in the host. Taking probiotics is generally safe and well tolerated by pregnant women and their children. Consumption of probiotics can result in both prophylactic and therapeutic effects. In healthy adult humans, the gut microbiome is stable at the level of the dominant taxa: Bacteroidetes, Firmicutes and Actinobacteria, and has a higher presence of Verrucomicrobia. During pregnancy, an increase in the number of Proteobacteria and Actinobacteria phyla and a decrease in the beneficial species Roseburia intestinalis and Faecalibacterium prausnitzii are observed. Pregnancy is a “window” to the mother’s future health. The aim of this paper is to review studies assessing the potentially beneficial effects of probiotics in preventing the development of diseases that appear during pregnancy, which are currently considered as risk factors for the development of metabolic syndrome, and consequently, reducing the risk of developing maternal metabolic syndrome in the future. The use of probiotics in gestational diabetes mellitus, preeclampsia and excessive gestational weight gain is reviewed. Probiotics are a relatively new intervention that can prevent the development of these disorders during pregnancy, and thus, would reduce the risk of metabolic syndrome resulting from these disorders in the mother’s future.  相似文献   

20.
Periodontal disease (PD) is one of the most common oral conditions affecting both youths and adults. There are some research works suggesting a high incidence of PD in pregnant women. As an inflammatory disease of bacterial origin, PD may result in the activation of the pathways affecting the course and the pregnancy outcome. The authors, based on the literature review, try to answer the PICO question: Does maternal periodontitis (exposure) influence the incidence of complications rates in pregnancy and the development of systemic diseases in childhood and adult offspring (outcome) in the humans of any race (population) compared to the offspring of mothers with healthy periodontium (comparison)? The authors try to describe the molecular pathways and mechanisms of these interdependencies. There is some evidence that maternal periodontitis may affect the pregnancy course and outcome, resulting in preeclampsia, preterm delivery, vulvovaginitis and low birth weight. It can be suggested that maternal periodontitis may affect offspring epigenome and result in some health consequences in their adult life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号