共查询到20条相似文献,搜索用时 0 毫秒
1.
Jos L. Neira David Ortega-Alarcn Bruno Rizzuti Martina Palomino-Schtzlein Adrin Velzquez-Campoy Alberto Falc 《International journal of molecular sciences》2021,22(19)
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. The first proteins in the cascade are common to all organisms (EI and HPr). The active site of HPr involves a histidine (His15) located immediately before the beginning of the first α-helix. The regulator of sigma D (Rsd) protein also binds to HPr. The region of HPr comprising residues Gly9-Ala30 (HPr9–30), involving the first α-helix (Ala16-Thr27) and the preceding active site loop, binds to both the N-terminal region of EI and intact Rsd. HPr9–30 is mainly disordered. We attempted to improve the affinity of HPr9–30 to both proteins by mutating its sequence to increase its helicity. We designed peptides that led to a marginally larger population in solution of the helical structure of HPr9–30. Molecular simulations also suggested a modest increment in the helical population of mutants, when compared to the wild-type. The mutants, however, were bound with a less favorable affinity than the wild-type to both the N-terminal of EI (EIN) or Rsd, as tested by isothermal titration calorimetry and fluorescence. Furthermore, mutants showed lower antibacterial properties against Staphylococcus aureus than the wild-type peptide. Therefore, we concluded that in HPr, a compromise between binding to its partners and residual structure at the active site must exist to carry out its function. 相似文献
2.
Monika Wojciechowska Joanna Miszkiewicz Joanna Trylska 《International journal of molecular sciences》2020,21(24)
Many peptides interact with biological membranes, but elucidating these interactions is challenging because cellular membranes are complex and peptides are structurally flexible. To contribute to understanding how the membrane-active peptides behave near the membranes, we investigated peptide structural changes in different lipid surroundings. We focused on two antimicrobial peptides, anoplin and W-MreB1–9, and one cell-penetrating peptide, (KFF)3K. Firstly, by using circular dichroism spectroscopy, we determined the secondary structures of these peptides when interacting with micelles, liposomes, E. coli lipopolysaccharides, and live E. coli bacteria. The peptides were disordered in the buffer, but anoplin and W-MreB1–9 displayed lipid-induced helicity. Yet, structural changes of the peptide depended on the composition and concentration of the membranes. Secondly, we quantified the destructive activity of peptides against liposomes by monitoring the release of a fluorescent dye (calcein) from the liposomes treated with peptides. We observed that only for anoplin and W-MreB1–9 calcein leakage from liposomes depended on the peptide concentration. Thirdly, bacterial growth inhibition assays showed that peptide conformational changes, evoked by the lipid environments, do not directly correlate with the antimicrobial activity of the peptides. However, understanding the relation between peptide structural properties, mechanisms of membrane disruption, and their biological activities can guide the design of membrane-active peptides. 相似文献
3.
Galdiero S Vitiello M D'Isanto M Falanga A Cantisani M Browne H Pedone C Galdiero M 《Chembiochem : a European journal of chemical biology》2008,9(5):758-767
The molecular mechanism of entry of herpes viruses requires a multicomponent fusion system. Virus entry and cell-cell fusion of Herpes simplex virus (HSV) requires four glycoproteins: gD, gB and gH/gL. The role of gB remained elusive until recently, when the crystal structure of HSV-1 gB became available. Glycoprotein B homologues represent the most highly conserved group of herpes virus glycoproteins; however, despite the high degree of sequence and structural conservation, differences in post-translational processing are observed for different members of this virus family. Whereas gB of HSV is not proteolytically processed after oligomerization, most other gB homologues are cleaved by a cellular protease into subunits that remain linked through disulfide bonds. Proteolytic cleavage is common for activation of many other viral fusion proteins, so it remains difficult to envisage a common role for different herpes virus gB structures in the fusion mechanism. We selected bovine herpes virus type 1 (BoHV-1) and herpes simplex virus type 1 (HSV-1) as representative viruses expressing cleaved and uncleaved gBs, and have screened their amino acid sequences for regions of highly interfacial hydrophobicity. Synthetic peptides corresponding to such regions were tested for their ability to induce the fusion of large unilamellar vesicles and to inhibit herpes virus infection. These results underline that several regions of the gB protein are involved in the mechanism of membrane interaction. 相似文献
4.
Mayra Quemé-Peña Dr. Tünde Juhász Dr. Judith Mihály Dr. Imola Cs. Szigyártó Dr. Kata Horváti Dr. Szilvia Bősze Judit Henczkó Bernadett Pályi Csaba Németh Dr. Zoltán Varga Dr. Ferenc Zsila Dr. Tamás Beke-Somfai 《Chembiochem : a European journal of chemical biology》2019,20(12):1578-1590
Antimicrobial peptides (AMPs) kill bacteria by targeting their membranes through various mechanisms involving peptide assembly, often coupled with disorder-to-order structural transition. However, for several AMPs, similar conformational changes in cases in which small organic compounds of both endogenous and exogenous origin have induced folded peptide conformations have recently been reported. Thus, the function of AMPs and of natural host defence peptides can be significantly affected by the local complex molecular environment in vivo; nonetheless, this area is hardly explored. To address the relevance of such interactions with regard to structure and function, we have tested the effects of the therapeutic drug suramin on the membrane activity and antibacterial efficiency of CM15, a potent hybrid AMP. The results provided insight into a dynamic system in which peptide interaction with lipid bilayers is interfered with by the competitive binding of CM15 to suramin, resulting in an equilibrium dependent on peptide-to-drug ratio and vesicle surface charge. In vitro bacterial tests showed that when CM15 ⋅ suramin complex formation dominates over membrane binding, antimicrobial activity is abolished. On the basis of this case study, it is proposed that small-molecule secondary structure regulators can modify AMP function and that this should be considered and could potentially be exploited in future development of AMP-based antimicrobial agents. 相似文献
5.
Jarosaw Ruczyski Brygida Parfianowicz Piotr Mucha Katarzyna Winiewska Lidia Piechowicz Piotr Rekowski 《International journal of molecular sciences》2022,23(15)
Mastoparan (MP) is an antimicrobial cationic tetradecapeptide with the primary structure INLKALAALAKKIL-NH2. This amphiphilic α-helical peptide was originally isolated from the venom of the wasp Paravespula lewisii. MP shows a variety of biological activities, such as inhibition of the growth of Gram-positive and Gram-negative bacteria, as well as hemolytic activity and activation of mast cell degranulation. Although MP appears to be toxic, studies have shown that its analogs have a potential therapeutic application as antimicrobial, antiviral and antitumor agents. In the present study we have designed and synthesized several new chimeric mastoparan analogs composed of MP and other biologically active peptides such as galanin, RNA III inhibiting peptide (RIP) or carrying benzimidazole derivatives attached to the ε-amino side group of Lys residue. Next, we compared their antimicrobial activity against three reference bacterial strains and conformational changes induced by membrane-mimic environments using circular dichroism (CD) spectroscopy. A comparative analysis of the relationship between the activity of peptides and the structure, as well as the calculated physicochemical parameters was also carried out. As a result of our structure–activity study, we have found two analogs of MP, MP-RIP and RIP-MP, with interesting properties. These two analogs exhibited a relatively high antibacterial activity against S. aureus compared to the other MP analogs, making them a potentially attractive target for further studies. Moreover, a comparative analysis of the relationship between peptide activity and structure, as well as the calculated physicochemical parameters, may provide information that may be useful in the design of new MP analogs. 相似文献
6.
Dr. Marta De Zotti Dr. Victoria N. Syryamina Dr. Rohanah Hussain Dr. Edoardo Longo Prof. Giuliano Siligardi Prof. Sergei A. Dzuba Prof. Lorenzo Stella Prof. Fernando Formaggio 《Chembiochem : a European journal of chemical biology》2019,20(16):2125-2132
Trichogin is a natural peptide endowed with antimicrobial and antitumor activity. A member of the peptaibol family, trichogin possesses a C-terminal amino alcohol. In the past, this moiety was substituted for a methyl ester for synthetic purposes and it was observed that this apparently slight modification caused significant changes in the peptide bioactivity. With the aim of understanding the reasons behind such observations, a detailed spectroscopic study on a number of trichogin analogues has been performed. Herein, data obtained from synchrotron radiation circular dichroism, NMR spectroscopy, and fluorescence spectroscopy in organic solvents at cryogenic temperatures are compared with those independently acquired by means of EPR spectroscopy at 80 K. It is unambiguously revealed that the presence of a reversible, temperature-driven, screw-sense interconversion from a right- to left-handed helix is determined by the C-terminal capping moiety. Data demonstrate, for the first time, the key role of a C-terminal methyl ester in promoting peptide screw-sense inversion. 相似文献
7.
8.
9.
10.
Akhter Hossain M Bathgate RA Kong CK Shabanpoor F Zhang S Haugaard-Jönsson LM Rosengren KJ Tregear GW Wade JD 《Chembiochem : a European journal of chemical biology》2008,9(11):1816-1822
Insulin-like peptide 5 (INSL5) was first identified through searches of the expressed sequence tags (EST) databases. Primary sequence analysis showed it to be a prepropeptide that was predicted to be processed in vivo to yield a two-chain sequence (A and B) that contained the insulin-like disulfide cross-links. The high affinity interaction between INSL5 and the receptor RXFP4 (GPCR142) coupled with their apparent coevolution and partially overlapping tissue expression patterns strongly suggest that INSL5 is an endogenous ligand for RXFP4. Given that the primary function of the INSL5-RXFP4 pair remains unknown, an effective means of producing sufficient quantities of this peptide and its analogues is needed to systematically investigate its structural and biological properties. A combination of solid-phase peptide synthesis methods together with regioselective disulfide bond formation were used to obtain INSL5. Both chains were unusually resistant to standard synthesis protocols and required highly optimized conditions for their acquisition. In particular, the use of a strong tertiary amidine, DBU, as N(alpha)-deprotection base was required for the successful assembly of the B chain; this highlights the need to consider incomplete deprotection rather than acylation as a cause of failed synthesis. Following sequential disulfide bond formation and chain combination, the resulting synthetic INSL5, which was obtained in good overall yield, was shown to possess a similar secondary structure to human relaxin-3 (H3 relaxin). The peptide was able to inhibit cAMP activity in SK-N-MC cells that expressed the human RXFP4 receptor with a similar activity to H3 relaxin. In contrast, it had no activity on the human RXFP3 receptor. Synthetic INSL5 demonstrates equivalent activity to the recombinant-derived peptide, and will be an important tool for the determination of its biological function. 相似文献
11.
Jos L. Neira Ana Cmara-Artigas Jos Gins Hernndez-Cifre María Grazia Ortore 《International journal of molecular sciences》2021,22(6)
The histidine phosphocarrier protein (HPr) kinase/phosphorylase (HPrK/P) modulates the phosphorylation state of the HPr protein, and it is involved in the use of carbon sources by Gram-positive bacteria. Its X-ray structure, as concluded from crystals of proteins from several species, is a hexamer; however, there are no studies about its conformational stability, and how its structure is modified by the pH. We have embarked on the conformational characterization of HPrK/P of Bacillus subtilis (bsHPrK/P) in solution by using several spectroscopic (namely, fluorescence and circular dichroism (CD)) and biophysical techniques (namely, small-angle X-ray-scattering (SAXS) and dynamic light-scattering (DLS)). bsHPrK/P was mainly a hexamer in solution at pH 7.0, in the presence of phosphate. The protein had a high conformational stability, with an apparent thermal denaturation midpoint of ~70 °C, at pH 7.0, as monitored by fluorescence and CD. The protein was very pH-sensitive, precipitated between pH 3.5 and 6.5; below pH 3.5, it had a molten-globule-like conformation; and it acquired a native-like structure in a narrow pH range (between pH 7.0 and 8.0). Guanidinium hydrochloride (GdmCl) denaturation occurred through an oligomeric intermediate. On the other hand, urea denaturation occurred as a single transition, in the range of concentrations between 1.8 and 18 µM, as detected by far-UV CD and fluorescence. 相似文献
12.
De Pinto V Tomasello F Messina A Guarino F Benz R La Mendola D Magrì A Milardi D Pappalardo G 《Chembiochem : a European journal of chemical biology》2007,8(7):744-756
Mitochondrial porin or VDAC (voltage-dependent anion-selective channel) is the most abundant protein in the mitochondrial outer membrane. The structure of VDAC has been predicted to be a transmembrane beta-barrel with an alpha-helix at the N terminus. It is a matter of debate as to whether this putative alpha-helix plays a structural role as a component of the pore walls or a function in the pore activity. We have synthesised the human VDAC1 (HVDAC1) N-terminal peptide Ac-AVPPTYADLGKSARDVFTK-NH2 (Prn2-20) and determined its structure by CD and NMR spectroscopy. CD studies show that the Prn2-20 peptide exists in aqueous solvent as an unstructured peptide with no stable secondary structure. In membrane-mimetic SDS micelles or water/trifluoroethanol, however, it assumes an amphipathic alpha-helix conformation between Tyr5 and Val16, as deduced from NMR. No ordered structure was observed in dodecyl beta-maltoside. Differential scanning calorimetric measurements were carried out in order to examine the membrane affinity of the peptide. Upon interaction with the negatively charged 1,2 dipalmitoyl-sn-glycero-3-phosphoserine membrane, Prn2-20 exhibited distinctive behaviour, suggesting that electrostatics play an important role. Interaction between the peptide and artificial bilayers indicates that the peptide lies on the membrane surface. Recombinant HVDAC1 deletion mutants, devoid of seven or 19 N-terminal amino acids, were used for transfection of eukaryotic cells. Over-expression of HVDAC1 increases the number of Cos cells with depolarised mitochondria, and this effect is progressively reduced in cells transfected with HVDAC1 lacking those seven or 19 amino acids. The mitochondrial targeting of the deletion mutants is unaffected. The overall picture emerging from our experiments is that the VDAC N-terminal peptide plays a role in the proper function of this protein during apoptotic events. 相似文献
13.
Mariano Venanzi Prof. Gianfranco Bocchinfuso Dr. Emanuela Gatto Dr. Antonio Palleschi Prof. Lorenzo Stella Prof. Fernando Formaggio Prof. Claudio Toniolo Prof. 《Chembiochem : a European journal of chemical biology》2009,10(1):91-97
The metal ion binding properties of two fluorescent analogues of trichogin GA IV, which is a natural undecapeptide showing significant antimicrobial activity, were studied by circular dichroism, time‐resolved optical spectroscopy, and molecular mechanics calculations. Binding of CaII and GdIII to the peptides investigated was shown to promote a structural transition from highly helical conformations to folded structures characterized by formation of a loop that embedded the metal ion. Time‐resolved spectroscopy revealed that peptide dynamics is also remarkably affected by ion binding: peptide‐backbone motions slowed down to the microsecond time scale. Finally, molecular mechanics calculations emphasized the role of the central Gly5‐Gly6 motif, which allowed for the twisting of the peptide segment that gave rise to the formation of the binding cavity. 相似文献
14.
Rohit K. Sharma Dr. Sandeep Sundriyal Dr. Nishima Wangoo Werner Tegge Dr. Rahul Jain Prof. 《ChemMedChem》2010,5(1):86-95
Synthetic antimicrobial peptides have recently emerged as promising candidates against drug‐resistant pathogens. We identified a novel hexapeptide, Orn‐D ‐Trp‐D ‐Phe‐Ile‐D ‐Phe‐His(1‐Bzl)‐NH2, which exhibits broad‐spectrum antifungal and antibacterial activity. A lead optimization was undertaken by conducting a full amino acid scan with various proteinogenic and non‐proteinogenic amino acids depending on the hydrophobic or positive‐charge character of residues at various positions along the sequence. The hexapeptide was also cyclized to study the correlation between the linear and cyclic structures and their respective antimicrobial activities. The synthesized peptides were found to be active against the fungus Candida albicans and Gram‐positive bacteria such as methicillin‐resistant Staphylococcus aureus and methicillin‐resistant Staphylococcus epidermidis, as well as the Gram‐negative bacterium Escherichia coli; MIC values for the most potent structures were in the range of 1–5 μg mL?1 (IC50 values in the range of 0.02–2 μg mL?1). Most of the synthesized peptides showed no cytotoxic effects in an MTT assay up to the highest test concentration of 200 μg mL?1. A tryptophan fluorescence quenching study was performed in the presence of negatively charged and zwitterionic model membranes, mimicking bacterial and mammalian membranes, respectively. The results of the fluorescence study demonstrate that the tested peptides are selective toward bacterial over mammalian cells; this is associated with a preferential interaction between the peptides and the negatively charged phospholipids of bacterial cells. 相似文献
15.
16.
Asymmetric Contribution of Aromatic Interactions Stems from Spatial Positioning of the Interacting Aryl Pairs in β‐Hairpins
下载免费PDF全文

Kamlesh Madhusudan Makwana Dr. Radhakrishnan Mahalakshmi 《Chembiochem : a European journal of chemical biology》2014,15(16):2357-2360
Isolated aromatic interactions in designed octapeptide β‐hairpin scaffolds display a near‐universal T‐shaped face‐to‐edge geometry in all positional permutations, with the exception of aryl‐Trp interactions. The heterogeneous asymmetric indole ring of Trp competes for a “shielding” face geometry, which lowers the scaffold stability in FtE aryl‐Trp pairs. Assessment of the contributions of aryl pairs (in the absence of solvent‐driven interactions) to the overall β‐hairpin structure reveals the superiority of Trp‐Phe and Trp‐Tyr contributions over the well‐established scaffold stabilization by Trp‐Trp. 相似文献
17.
Circular dichroism (CD) is a useful technique for monitoring changes in the conformation of antimicrobial peptides or gelatin. In this study, interactions between cationic peptides and gelatin were observed without affecting the triple helical content of the gelatin, which was more strongly affected by anionic surfactant. The peptides did not adopt a secondary structure in the presence of aqueous solution or Tween 80, but a peptide secondary structure formed upon the addition of sodium dodecyl sulfate (SDS). The peptides bound to the phosphate group of lipopolysaccharide (LPS) and displayed an alpha-helical conformation while (KW)(4) adopted a folded conformation. Further, the peptides did not specifically interact with the fungal cell wall components of mannan or laminarin. Tryptophan blue shift assay indicated that these peptides interacted with SDS, LPS, and gelatin but not with Tween 80, mannan, or laminarin. The peptides also displayed antibacterial activity against P. aeruginosa without cytotoxicity against HaCaT cells at MIC, except for HPA3NT3-analog peptide. In this study, we used a CD spectroscopic method to demonstrate the feasibility of peptide characterization in numerous environments. The CD method can thus be used as a screening method of gelatin-peptide interactions for use in wound healing applications. 相似文献
18.
Fiammetta Monacelli Daniela Storace Cristina D’Arrigo Roberta Sanguineti Roberta Borghi Davide Pacini Anna L. Furfaro Maria A. Pronzato Patrizio Odetti Nicola Traverso 《International journal of molecular sciences》2013,14(6):10694-10709
The aim of this work was to evaluate the ability of oxidative and glycative stressors to modify properties of human serum albumin (HSA) by analyzing markers of glycation (pentosidine) and oxidation (advanced oxidative protein products (AOPPs)) and assessing fluorescence and circular dichroism. HSA was incubated for up to 21 days with ribose, ascorbic acid (AA) and diethylenetriamine pentacetate (DTPA) in various combinations in order to evaluate influences of these substances on the structure of HSA. Ribose was included as a strong glycative molecule, AA as a modulator of oxidative stress, and DTPA as an inhibitor of metal-catalyzed oxidation. Ribose induced a significant increase in pentosidine levels. AA and DTPA prevented the accumulation of pentosidine, especially at later time points. Ribose induced a mild increase in AOPP formation, while AA was a strong inducer of AOPP formation. Ribose, in combination with AA, further increased the formation of AOPP. DTPA prevented the AA-induced generation of AOPP. Ribose was also a potent inducer of fluorescence at 335nm ex/385nm em, which is typical of pentosidine. AA and DTPA prevented this fluorescence. Circular dichroism showed complex results, in which AA and DTPA were strong modifiers of the percentages of the alpha-helical structure of HSA, while ribose affected the structure of HSA only at later time points. 相似文献
19.
Parvesh Wadhwani Saiguru Sekaran Erik Strandberg Jochen Bürck Archana Chugh Anne S. Ulrich 《International journal of molecular sciences》2021,22(18)
A group of seven peptides from spider venom with diverse sequences constitute the latarcin family. They have been described as membrane-active antibiotics, but their lipid interactions have not yet been addressed. Using circular dichroism and solid-state 15N-NMR, we systematically characterized and compared the conformation and helix alignment of all seven peptides in their membrane-bound state. These structural results could be correlated with activity assays (antimicrobial, hemolysis, fluorescence vesicle leakage). Functional synergy was not observed amongst any of the latarcins. In the presence of lipids, all peptides fold into amphiphilic α-helices as expected, the helices being either surface-bound or tilted in the bilayer. The most tilted peptide, Ltc2a, possesses a novel kind of amphiphilic profile with a coiled-coil-like hydrophobic strip and is the most aggressive of all. It indiscriminately permeabilizes natural membranes (antimicrobial, hemolysis) as well as artificial lipid bilayers through the segregation of anionic lipids and possibly enhanced motional averaging. Ltc1, Ltc3a, Ltc4a, and Ltc5a are efficient and selective in killing bacteria but without causing significant bilayer disturbance. They act rather slowly or may even translocate towards intracellular targets, suggesting more subtle lipid interactions. Ltc6a and Ltc7, finally, do not show much antimicrobial action but can nonetheless perturb model bilayers. 相似文献