首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以NaAlO2+NaOH为电解液体系,在恒压模式下对SiC体积分数为45%,粒径为5μm的SiCp/Al基复合材料表面进行微弧氧化处理,研究了占空比对SiCp/Al基复合材料微弧氧化膜层组织及性能的影响。用SEM分析微弧氧化膜层的形貌;用X射线衍射仪分析膜层的相组成;采用粗糙度仪、维氏硬度仪、划痕仪对膜层粗糙度、显微硬度及结合力进行了分析;用电化学工作站分析膜层的耐蚀性。结果表明:随着占空比的增大,微弧氧化膜层变得连续,厚度呈现增加趋势,粗糙度逐渐增加,孔隙率逐渐降低。占空比对微弧氧化膜层的物相有一定影响。SiCp/Al基复合材料微弧氧化膜层与基体的结合力随占空比的增加先增大后减小。不同占空比下制备的微弧氧化膜层均能提高SiCp/Al基复合材料的耐蚀性,占空比为70%时制备的微弧氧化膜层耐蚀性最好。  相似文献   

2.
采用微弧氧化技术在 TiCP/Ti6Al4V 复合材料表面制备陶瓷膜。在NaAlO2和NaH2PO2两种溶液体系中通过添加不同添加剂 NaOH、C10H12CaNa2N2O8·4H2O和Na2SiO3, 研究电解液组分对陶瓷膜组织、耐蚀性和耐磨性的影响。结果表明: 在NaH2PO2电解液体系中生成的膜层由金红石型和锐钛矿型TiO2相组成, 而在NaAlO2体系中除了生成TiO2外, 还生成了Al2TiO5和γ-Al2O3。添加NaOH可以加快微弧氧化反应速率, 添加NaAlO2和Na2SiO3有利于提高膜层的硬度, NaH2PO2溶液体系中形成的膜层厚度是NaAlO2溶液体系的2~3倍。 在NaAlO2和NaH2PO2电解液体系中生成的膜层, 其耐腐蚀性能排序均为: Na2SiO3>C10H12CaNa2N2O8·4H2O>NaOH。在NaAlO2电解液体系中生成的膜层的耐磨性能排序为: Na2SiO3>NaOH>C10H12CaNa2N2O8·4H2O, 而在NaH2PO2电解液体系中生成的膜层的耐磨性能排序为: Na2SiO3>C10H12CaNa2N2O8·4H2O>NaOH。TiCP/Ti6Al4V复合材料经过微弧氧化处理后, 耐磨性和耐蚀性均优于基体, 在NaH2PO2+Na2SiO3电解液中生成的微弧氧化膜的耐蚀性最好, 耐磨性也较好, 其腐蚀电流密度较钛基复合材料基体降低约2个数量级, 因此综合性能最好。  相似文献   

3.
为了提高铝合金的耐磨性,在六偏磷酸盐复合电解液中加入不同浓度氧化石墨烯(GO)对铝合金进行微弧氧化(MAO),利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、膜层测厚仪和显微硬度计分析GO对微弧氧化膜层的微观形貌、相组成、元素分布、厚度和显微硬度的影响,重点研究了不同GO浓度下的铝合金微弧氧化膜层的摩擦磨损性能。结果表明:电解液中添加GO纳米颗粒对微弧氧化膜层有显著的影响。Al2O3/GO膜层生长速率随GO含量增加而上升,其主要成分是α-Al2O3和γ-Al2O3。随着GO浓度的增加,微弧氧化膜层的显微硬度相较于纯2A12铝合金明显提高。由于电解氧化过程中C元素掺入膜层界面,Al2O3/GO膜层的表面变得致密且光滑,摩擦系数明显下降且耐磨性提高。该方法为强化铝合金表面耐磨提供了新思路,对拓展铝合金的应用具有重要意义。  相似文献   

4.
采用微弧氧化技术对SiC体积分数分别为17vol%和55vol%的两种SiCp/Al复合材料进行处理。分析了两种材料微弧氧化膜的组织、形貌、相组成,测定了膜层的粗糙度、显微硬度、结合力,考察了膜层的耐磨和耐蚀性。结果表明:SiC的含量对SiCp/Al复合材料微弧氧化膜的表面形貌、粗糙度、相组成、结合力及摩擦磨损性能均有影响。17vol%SiCp/2009Al复合材料的微弧氧化膜较55vol%SiCp/6061Al复合材料更平整,微孔大小更均匀。55vol%SiCp/6061Al复合材料的微弧氧化膜的粗糙度(3.308 μm)比17vol%SiCp/2009Al复合材料(2.140 μm)大,表面熔融物堆积更多。两种材料的微弧氧化膜中均含有Al、Si、O、C、W等元素。55vol%SiCp/6061Al复合材料的微弧氧化膜中Mullite(SiO2-Al2O3)相、α-Al2O3相、β-Al2O3相较多。17vol%SiCp/2009Al复合材料的微弧氧化膜的结合(38.55 N)较55vol%SiCp/6061Al(11.5 N)复合材料好。55vol%SiCp/6061Al复合材料的微弧氧化膜摩擦系数较大,磨损较严重。微弧氧化处理能有效改善两种SiCp/Al复合材料的耐蚀性。   相似文献   

5.
高虹  王超  姜波  宋仁国 《材料保护》2023,(6):128-136
为了探究TiO2和聚四氟乙烯(PTFE)对6063铝合金微弧氧化膜层的影响,在Na2SiO3基础电解液中添加TiO2和PTFE固体纳米微粒,采用微弧氧化技术(MAO)在6063铝合金上制备了微弧氧化复合膜层。利用扫描电子显微镜(SEM)、X射线衍射(XRD)、摩擦磨损试验机以及电化学工作站研究了微弧氧化陶瓷膜层的形貌、相组成、元素分布以及耐磨性和耐蚀性。结果表明:加入4 g/L TiO2和10 mg/L PTFE制成复合添加剂制备的复合膜层其表面孔径尺寸明显降低,膜层厚度增加,结构致密;摩擦系数由0.9降到0.5,耐磨性最好;电化学试验测得复合膜层的自腐蚀电位最大,为-0.18 V;自腐蚀电流密度最小,为1.09×10-8 A/cm2。  相似文献   

6.
为了探究氧化钇和氧化铬颗粒对纯铝微弧氧化膜层性能的影响,采用磷酸盐电解液体系,以氧化钇和氧化铬为添加剂,利用微弧氧化技术,在1060工业纯铝表面制备微弧氧化膜层。利用扫描电镜(SEM)、X射线衍射仪器(XRD)、涡流测厚仪、显微硬度计、台阶仪器、摩擦磨损试验机和电化学方法分析测试了膜层的表面形貌、相组成、厚度、硬度、粗糙度、耐磨损性能和耐腐蚀性能。结果表明:与单独添加2.5 g/L Y2O3和2.5 g/L Cr2O3条件下相比,在电解液中同时加入2.5 g/L Y2O3和2.5 g/L Cr2O3制备的复合膜层表面孔洞数量减少,表面更加致密,耐磨性较好,膜层的显微硬度达到746 HV、厚度达到20.1μm、粗糙度达到2 226.2 nm,且此时的复合膜层的自腐蚀电位最大,自腐蚀电流密度最小,耐腐蚀性能最好。  相似文献   

7.
在含有不同浓度氧化钕(Nd2O3)微粒的电解液中,利用微弧氧化技术在2A12铝合金表面制备膜层。研究不同浓度的Nd2O3微粒对微弧氧化膜层硬度、厚度以及膜基结合力的影响,为通过微弧氧化在2A12铝合金表面制备性能良好的膜层提供理论依据。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和X射线光电子能谱(XPS)分析了膜层截面形貌和膜层的相组成,采用TT-230涡流测厚仪、HVS-1000数字维氏硬度仪和MFT-4000型多功能材料表面性能试验机分别对膜层厚度、硬度和膜基结合力进行测试。结果表明:膜层主要由α-Al2O3、γ-Al2O3和SiO2相组成;随着Nd2O3微粒浓度的增加,膜层硬度、厚度和膜基结合力均呈现出先增加后减小的趋势,并且在Nd2O3微粒浓度为0.3 g/L时,膜层的显微硬度、厚度和膜...  相似文献   

8.
选取硅酸盐/磷酸盐体系在Ti_2AlNb表面制备微弧氧化陶瓷膜,利用SEM,XRD,XPS等研究了电解液中Na_2WO_4对氧化膜生长过程、微观结构及成分的影响,同时评价了Ti_2AlNb微弧氧化膜的摩擦磨损行为。结果表明:硅酸盐/磷酸盐电解液中,氧化膜生长速率仅为0.08μm/min,膜层较疏松,表面存在大孔相连的"网状"结构,主要相组成为金红石TiO_2、锐钛矿TiO_2、Al_2O_3及Nb_2O_5。电解液中加入Na_2WO_4,缩短了Ti_2AlNb合金的起弧时间、提高了氧化膜的生长速率、改善了膜层均匀性,同时在膜层中引入了少量WO_3。此外,在Na_2WO_4参与下制备的微弧氧化膜的耐磨性更好。与Si_3N_4对磨时,Ti_2AlNb合金发生严重的磨粒磨损,摩擦因数高达0.5~0.7;含4g/L Na_2WO_4电解液中制备的Ti_2AlNb微弧氧化膜的摩擦因数、比磨损率分别为0.24及6.2×10~(-4) mm~3/(N·m),表面仅出现"鱼鳞状"疲劳磨损特征。  相似文献   

9.
对SiCP/ 2024 铝基复合材料进行微弧氧化表面处理, 分析了陶瓷膜截面的显微组织、成分分布, 测量了其相组成和硬度分布, 并比较了氧化前后极化曲线的变化。结果表明, 在硅酸盐溶液中获得的陶瓷膜由莫来石、α-Al2O3 、γ-Al2O3 晶态相和SiO2 非晶相组成, 残留的SiC 增强体很少, 膜与复合材料呈现良好的冶金结合。膜具有两层结构, 外层Si 含量较高并主要来自电解液, 而内层膜里莫来石的形成同SiC 增强体氧化密切相关。微弧氧化处理后, SiCP / 2024 铝基复合材料的抗腐蚀能力得到很大提高, 这归因于形成了一层完整连续的氧化膜。   相似文献   

10.
研究电解液中添加KOH及K2ZrF6对TC4钛合金微弧氧化膜层形貌及结合强度的影响。选用硅酸盐-磷酸盐复合盐为主盐,添加甘油作为辅助试剂,分别配制两种均不添加、只添加KOH、只添加K2ZrF6和两种物质均添加的4种电解液对TC4钛合金进行微弧氧化处理。通过膜层厚度、膜层表面粗糙度、膜层硬度、膜层与基体的结合强度等检测,对比分析不同膜层的综合性能,并通过扫描电子显微镜、能谱仪及X射线衍射仪等对膜层物相进行对比分析。结果表明:在硅酸盐-磷酸盐复合盐为主盐的电解液中,氧化30 min后,添加KOH试剂使微弧氧化反应起弧电压从350 V降低至300 V,膜层表面粗糙度Ra为1.66μm,结合强度为29 MPa,膜层硬度866HV,厚度19μm。添加K2ZrF6试剂使微弧氧化的起弧电压提高至380 V,膜层表面粗糙度Ra为2.47μm,结合强度为18 MPa,膜层硬度992HV,厚度为26μm,同时,氧化反应生成ZrO2,可大幅提高膜层硬度。添加KOH和K2ZrF6试剂可以影响微弧氧化反应起弧电压及工作电压,进而影响膜层的组织形貌,从而改善膜层的表面粗糙度和厚度以及结合强度,硬度等性能。  相似文献   

11.
为了提高TC11钛合金耐磨性及高温抗氧化性,通过添加不同浓度Nd2O3颗粒制备了Nd2O3颗粒掺杂的微弧氧化层。采用扫描电镜、X射线衍射仪等研究了Nd2O3浓度对TC11钛合金表面微弧氧化层微观结构、物相组成的影响,并评价了涂层的耐磨性与高温抗氧化性能。结果表明:添加Nd2O3颗粒后,膜层表面的微孔数量减少,膜层物相以金红石型TiO2和锐钛矿型TiO2为主,随着Nd2O3浓度的增加,Nd元素在膜层中的含量逐渐增加,膜层厚度先增大后减小;在Nd2O3浓度为1 g/L时,所制备的微弧氧化层综合性能最佳,膜层平均厚度8.68μm,磨损失重0.43 mg,磨痕宽度598.04μm,高温氧化增重0.139 mg/cm2。与TC11钛合金基体和未添加Nd2  相似文献   

12.
采用微弧氧化方法在硅酸盐电解液里在2219铝合金搅拌摩擦焊接头表面均匀生长一层50 μm陶瓷膜, 分析了铝合金基体和焊缝区陶瓷膜的形貌、相组成和显微硬度分布, 探讨了合金显微组织和微弧氧化膜生长过程的相互影响. 结果表明, 铝合金显微组织对微弧氧化膜的生长影响较小, 铝合金基体和焊缝区的微弧氧化膜特性几乎相同, 陶瓷膜都是由α-Al2O3、γ-Al2O3和莫来石(3Al2O3·2SiO2)相组成; 不同区域膜层的显微硬度相等, 其平均硬度约为HV 1500. 另外, 微弧放电高温过程对膜/基界面附近的铝合金显微组织没有影响.  相似文献   

13.
为了提高铸铝合金的使用寿命,在接触网ZL101A铸铝合金件上制备了微弧氧化膜层,并采用扫描电镜(SEM)、X射线衍射仪(XRD)、摩擦磨损试验、电化学试验等,研究了不同电解液对微弧氧化膜层性能的影响。结果表明:电解液为硅酸盐时,膜层有较好的耐磨性和耐腐蚀性。  相似文献   

14.
锆合金广泛用于核工业,也是潜在的生物医用材料,然而其表面性能需要改善。为此,开发了硅酸盐-六偏磷酸钠电解液,采用双脉冲微弧氧化技术在Zr-2锆合金上生成较厚的膜层,并运用扫描电镜(SEM)、能谱仪和X射线衍射仪(XRD)分析了膜层的形貌和组成,并考察了膜层的耐磨性。结果表明:微弧氧化60 min可以生成厚120μm左右的膜层,相组成主要是单斜氧化锆(m-ZrO2),含少量的四方氧化锆(t-ZrO2);微弧氧化20 min的膜层在20 N下很快被磨穿;而微弧氧化60 min的膜层在20 N下干摩擦1 800 s后未失效,其耐磨性相对于基体大大提高。  相似文献   

15.
为了提高铸铝合金的使用寿命,以六偏磷酸钠、氢氧化钠和钨酸钠作为电解液,采用恒流双向脉冲电源在ZL101A铝合金表面制备了微弧氧化膜。采用扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计、摩擦磨损试验等研究了氧化时间对膜层耐磨性能的影响。结果表明:在该电解液中,随着氧化时间的增加,不稳定的γ-Al_2O_3相逐步转化为稳定的α-Al_2O_3相,表面粗糙度也随之增加,硬度和耐磨性也随之先增加后降低,在20 min时制备的膜层硬度较高,具有较好的耐磨性。  相似文献   

16.
镁合金耐蚀性差,极大限制了其在易腐蚀环境中的应用。微弧氧化能够在镁合金表面制备一层类陶瓷氧化膜,能有效提高其耐蚀性。受微弧氧化成膜机理的影响,膜层中往往存在大量孔洞和裂纹;并且通常氧化膜主要由MgO组成,在潮湿或酸性环境中会吸水或溶解,导致膜层的耐蚀性不理想。将具有优良化学稳定性和高硬度的ZrO2引入镁合金微弧氧化膜中,获得主要由ZrO2构成或含ZrO2的氧化膜,同时减少膜层中缺陷,能够提高其对镁合金基体的保护效果。从镁合金微弧氧化电解液、电参数、两步微弧氧化工艺及与其他表面处理技术相结合的4个方面概述了含ZrO2微弧氧化复合膜层的制备工艺、成膜机制及耐蚀性等方面研究的进展,同时分析了各自存在的问题及不足。未来有必要优化制备含ZrO2微弧氧化膜的电解液的组成,以保证其稳定性和有效性,并明确使用过程中电解液各成分的消耗和补充规律。进一步研究两步微弧氧化工艺,获得对镁合金基体有更好保护作用的复合膜层。探索将微弧氧化与其他表面处理技术相结合,综合利用2种技术及膜层的优点。根据ZrO<...  相似文献   

17.
SiCP/AZ31镁基复合材料微弧氧化膜结构与性能分析   总被引:1,自引:0,他引:1  
采用微弧氧化表面处理技术在SiC颗粒增强AZ31镁基复合材料表面制备保护性陶瓷膜.分析了陶瓷膜的表面形貌、截面组织和相组成,并测量了膜层的硬度、热震和电化学腐蚀特性.结果表明,陶瓷膜由MgO、Mg2SiO4和少量同电解液组成元素相关的相所组成,膜内还残留少量SiCP增强体.膜层的最高硬度可达到HV800,比复合材料基体提高五倍以上.经过100次热循环(500℃→水淬)后膜层与复合材料结合良好,显示该膜层有较好的抗热震性能.微弧氧化处理后,SiCP/AZ31镁基复合材料的抗腐蚀能力得到较大提高.  相似文献   

18.
为改善铝合金零部件的摩擦磨损特性,采用微弧氧化和射频磁控溅射技术,在2A12铝合金表面制备Al2O3/CrNx复合膜。用X射线衍射仪、涡流测厚仪、纳米硬度仪、微摩擦磨损试验机、非接触表面三维形貌仪及扫描电镜对Al2O3涂层及复合膜的相组成、膜厚、纳米硬度、摩擦磨损特性和磨痕形貌等进行了研究。实验结果表明:32μm厚的多孔Al2O3陶瓷涂层由α-Al2O3和γ-Al2O3相组成,外层1.2μm厚的CrNx膜由单质Cr,Cr2N和CrN相组成;Al2O3涂层及Al2O3/CrNx复合膜的摩擦因数和磨损率都随法向载荷的增加而增大,在相同实验参数下,复合膜的摩擦因数和磨损率都远小于Al2O3涂层的,这表明在Al2O3涂层表面沉积CrNx膜能明显改善其摩擦磨损特性,将延长对偶件的使用寿命。  相似文献   

19.
为了比较微弧氧化和硬质阳极氧化对铝合金表面性能的影响,对7050铝合金试样分别进行微弧氧化及硬质阳极氧化处理,利用X射线衍射仪、扫描电子显微镜、显微硬度计等分析了7050铝合金微弧氧化陶瓷层与硬质阳极氧化陶瓷层的物相组成、显微组织及显微硬度,并用摩擦磨损试验机对微弧氧化陶瓷层与硬质阳极氧化陶瓷层进行磨损性能研究。结果表明:微弧氧化陶瓷层的磨痕深度小于硬质阳极氧化陶瓷层的磨痕深度,而微弧氧化陶瓷层的平均磨损失重大于硬质阳极氧化陶瓷层的平均磨损失重,这是因为微弧氧化陶瓷层主要由Al、α?Al2O3、γ?Al2O3相组成,其密度较大,而硬质阳极氧化陶瓷层主要由非晶Al2O3组成,其密度较小。因此,在相同条件下通过Tabel摩擦磨损试验来比较微弧氧化陶瓷层与硬质氧化膜层的耐磨性时,应以相同条件下,相同磨损转数时,由剩余膜层的厚度来衡量。  相似文献   

20.
为了改善镁合金微弧氧化膜的性能,在Na2SiO3-NaAlO2复合电解液中添加不同含量的纳米SiC对AM50镁合金进行微弧氧化。利用膜层测厚仪、共聚焦激光显微镜(CLSM)、扫描电镜(SEM)、能谱仪分别研究膜的厚度、表面粗糙度、微观形貌和元素分布,采用摩擦磨损试验机对镁合金微弧氧化前后的干滑动磨损行为进行了研究,测量摩擦系数和磨损速率,运用SEM和CLSM对磨损后的形貌进行观察,并用能谱仪分析成分。结果表明:随电解液中纳米SiC含量的增加,微弧氧化膜的厚度和表面粗糙度均增大,颜色加深,膜层的摩擦系数和磨损速率均呈现先减小后增大的趋势;当SiC含量为6g/L时氧化膜的摩擦系数最小、磨损速率最低,耐磨性能较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号