首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多尺度反向散布熵能够有效度量时间序列的复杂性,但在粗粒化构造上存在缺陷,且在表征滚动轴承非线性故障特征时缺乏对其他通道同步信息的有效利用。为了准确提取轴承信号的故障特征,结合精细化和广义复合多尺度的思想,将表征同步多通道数据多变量复杂度的多变量熵理论应用到轴承故障诊断中,提出了精细广义复合多元多尺度反向散布熵(RGCMvMRDE)。在此基础上,提出了一种基于RGCMvMRDE与引力搜索算法优化支持向量机(GSA-SVM)的滚动轴承故障诊断方法。首先,利用RGCMvMRDE全面表征滚动轴承故障特征信息,构建故障特征集;其次,采用GSA-SVM对故障类型进行智能识别;最后,将所提方法应用于滚动轴承实验数据分析,并将其与现有基于多尺度反向散布熵、广义多尺度反向散布熵和精细复合多元多尺度排列熵的故障特征提取方法进行了对比。研究结果表明,所提RGCMvMRDE不仅能够有效和精准地诊断轴承的不同故障类型和故障程度,且诊断效果优于上述对比方法。  相似文献   

2.
为克服多尺度模糊熵(MFE)对机车受电弓故障特征表征不明显的不足,将分段复合多尺度模糊熵(PCMFE)用于机车受电弓的故障特征提取中,并据此提出基于PCMFE的机车受电弓故障诊断方法。与MFE不同的是,PCMFE采用分段粗粒化和复合多尺度模糊熵的计算方法,可以解决MFE计算过程中数据丢失和在大尺度因子下计算不稳定的问题,可以更加准确地对故障信号进行表征。机车受电弓故障诊断实例结果表明,PCMFE对不同故障的区分性比MFE更好,提高了极限学习机(ELM)的诊断精度。  相似文献   

3.
为克服多尺度样本熵的不足,更精确地提取滚动轴承非线性故障特征,将一种新的非线性动力学分析方法--精细复合多尺度散布熵引入到滚动轴承的故障特征提取。在此基础上,提出了一种基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断新方法。通过滚动轴承实验数据分析,将所提方法与基于多尺度样本熵和多尺度散布熵的故障诊断方法进行了对比,结果表明:所提方法不仅能精确地识别滚动轴承故障类型和故障程度,而且故障识别率高于另两种方法。  相似文献   

4.
基于改进多尺度模糊熵的滚动轴承故障诊断方法   总被引:1,自引:0,他引:1  
滚动轴承故障诊断的关键是敏感故障特征的提取。多尺度模糊熵(multi-scale fuzzy entropy,简称MFE)是一种衡量时间序列复杂性的有效分析方法,已经被用于滚动轴承振动信号故障特征提取。针对MFE算法中多尺度粗粒化过程存在的缺陷,笔者采用滑动均值的方式代替粗粒化过程,提出了改进的多尺度模糊熵算法,并通过仿真信号将其与MFE进行了对比分析。在此基础上,提出了一种基于改进多尺度模糊熵与支持向量机的滚动轴承故障诊断方法。最后,将所提故障诊断方法应用于的滚动轴承实验数据分析,并与基于MFE的故障诊断方法进行了对比,结果验证了所提方法的有效性和优越性。  相似文献   

5.
6.
现代机械设备传动系统中轴承和齿轮容易发生局部疲劳故障,单一部件典型故障引起的载荷波动极易造成其他部件继发性疲劳故障,使机械传动系统呈现多部件复合故障状态。针对齿轮箱传动系统中轴承和齿轮复合故障诊断问题,提出了基于多尺度卷积核匹配复合正则化的卷积稀疏编码(multiscalecompoundregularized convolutional sparse coding,简称MCRCSC)分离诊断算法。首先,根据齿轮箱轴承和齿轮典型复合故障所呈现出的稀疏性与尺度特性进行了模型假设;其次,依据不同故障的信号尺度特性与分布特点提出了多尺度卷积核与复合正则化约束的概念,并建立了多成分卷积分离模型;最后,通过交替方向乘子(alternating direction method of multipliers,简称ADMM)优化架构将频域转化后的优化方程分解为子问题进行交替求解,对分离卷积重构后的故障信号进行谱分析得到对应典型故障频率分布。实际齿轮箱故障模拟实验表明,所提算法在随机噪声和谐波干扰下仍具有优良故障分离诊断能力。  相似文献   

7.
为充分利用多通道振动信息,将表征同步多通道数据多变量复杂度的多元多尺度熵理论引入滚动轴承故障诊断.同时,针对排列熵未考虑时间序列的振幅信息以及多尺度过程中粗粒化方式存在不足等缺陷,提出了精细复合多元多尺度加权排列熵并将其用于提取滚动轴承的故障特征.随后,利用t-SNE对特征进行二次提取,寻找相关性较大的特征组成候选样本...  相似文献   

8.
齿轮箱发生故障时,其振动信号具有不平稳和非线性等特征,而常用的齿轮箱故障诊断方法大多是建立在单通道振动信号分析基础上,容易造成故障信息丢失,故而在工业生产中实用性受限。为了克服此缺陷,将多元多尺度色散熵引入到齿轮箱故障诊断当中,并改进其粗粒化方式,提出了改进多元多尺度色散熵,用以提取齿轮箱多通道振动信号的故障信息。在此基础上,提出一种基于集合经验模态分解,改进多元多尺度色散熵和遗传算法优化支持向量机的齿轮箱故障诊断方法。通过实验数据分析,并与多元多尺度样本熵、多元多尺度模糊熵等现有方法相比较,证明该方法具有更高的准确率和稳定性,且在处理短时间序列时具有明显优势。  相似文献   

9.
王振亚  姚立纲 《中国机械工程》2020,31(20):2463-2471
针对滚动轴承故障特征提取困难的问题,提出了一种广义精细复合多尺度样本熵(GRCMSE)与流形学习相结合的特征提取方法。利用GRCMSE提取滚动轴承故障特征信息;采用判别式扩散映射分析(DDMA)方法对高维特征进行降维处理;将低维故障特征输入粒子群优化支持向量机多故障分类器中进行故障识别。滚动轴承故障实验分析结果表明:GRCMSE特征提取效果优于多尺度样本熵(MSE)、精细复合多尺度样本熵(RCMSE)和广义多尺度样本熵(GMSE); DDMA降维效果优于等度规映射(Isomap)和局部切空间排列(LTSA)的降维效果;GRCMSE和DDMA相结合后的滚动轴承故障识别精度达到100%。  相似文献   

10.
为克服多尺度模糊熵(MFE)在刻画齿轮故障信息时存在的不足,对其进行改进,提出增强多尺度模糊熵(EMFE)的概念,并由此提出基于EMFE的齿轮故障诊断新方法.相比于MFE,EMFE的序列粗粒化过程不存在信息泄露,并且能够保证熵值计算的稳定性,能够更为准确的对信号包含的信息进行刻画.齿轮故障诊断实例结果表明,以EMFE作为故障特征输入支持向量机(SVM)中进行故障诊断,可以有效提高故障诊断的精度.  相似文献   

11.
为了降低风力发电机组滚动轴承信号的噪声和进行多信道数据处理,提出了一种基于EEMD和多元多尺度熵的特征提取方法。利用EEMD算法对多信道的原始声发射信号进行分解获取无模式混淆的IMF,通过敏感度评估算法选取反应故障特征敏感的IMF进行多元多尺度熵分析,由单因素方差分析选择最优尺度对应的多元样本熵作为各种故障的特征值。通过从实验台采集得到正常、轻微损伤和断裂3种状态的样本数据,与多种特征提取方法相比较和SVM算法分类分析,证明了所选择故障特征量的准确性,同时也验证了所提出的滚动轴承故障特征提取方法的有效性和准确性。  相似文献   

12.
多尺度排列熵(Multi?scale permutation entropy,MPE)随着尺度因子的增加得到的粗粒化序列长度越来越短,造成时间序列信息的严重损失.为此,提出了时移多尺度排列熵(Time?shifted multi?scale permutation entropy,TSMPE).首先,采用仿真信号分别对TSMPE与MPE做仿真对比分析,结果表明,TSMPE对原始振动信号的长度依赖性较小,得到的熵值更加稳定.进一步地,提出了一种基于TSMP E与极限学习机的滚动轴承故障检测与诊断方法,将其应用于两组实际滚动轴承测试数据对滚动轴承故障类型和程度进行识别,结果表明:所提出故障诊断方法不仅能够准确地诊断滚动轴承的故障类型和程度,而且识别率高于基于MPE与ELM的故障诊断方法.  相似文献   

13.
多尺度模糊熵能够较好的量化振动信号的复杂程度,但缺乏对其他信道信息的有效利用,为了充分利用其他信道的振动信息,将表征同步多通道数据多变量复杂度的多变量熵理论应用到轴承故障诊断中.为了准确提取轴承信号中的故障特征,提出了基于自适应噪声完备集成经验模态分解(Complete Ensemble Empirical Mode ...  相似文献   

14.
针对早期滚动故障特征不明显和特征提取难等问题,将一种新的衡量时间序列复杂性的方法--复合多尺度熵(CMSE)应用于滚动轴承故障振动信号的特征提取。CMSE克服了多尺度熵中粗粒化方式的不足,得到的熵值一致性和稳定性好。同时,针对机械故障智能诊断中收集大量的样本比较容易而要对所有的样本进行类别标记却较为困难这一问题,将拉普拉斯支持向量机(LapSVM)应用于滚动轴承故障的智能诊断中。在此基础上,提出了一种基于CMSE,序列前向选择(SFS)特征选择和LapSVM的滚动轴承故障诊断方法。最后,将提出的方法应用于试验数据分析,结果表明:CMSE能够有效地提取滚动轴承的故障特征;当有标记样本的数量较少时,与仅使用有标记样本进行学习的支持向量机相比,结合SFS特征选择的LapSVM方法利用大量的无标记样本进行辅助学习,可以显著提高故障诊断的正确率。  相似文献   

15.
针对齿轮故障特征在单一尺度难以全面提取的问题,提出一种基于参数优化的变分模态分解和多尺度排列熵的齿轮故障诊断方法.利用改进的蝙蝠算法对变分模态分解中的参数K和a进行全局寻优,以局部极小包络熵作为适应度值,搜寻K和a的最优组合.经VMD分解得到既定的若干IMF分量,分别计算其相应的多尺度排列熵,构建故障特征向量,输入到极...  相似文献   

16.
张婕  张梅  陈万利 《机电工程》2023,40(5):682-690
为充分提取非线性、非平稳的轴承故障信号特征信息,进而提高轴承故障诊断精度,提出了一种基于变分模态分解(VMD)和精细复合多尺度均值散布熵(RCMMDE)的轴承故障诊断方法(算法)。首先,使用VMD将轴承故障振动信号分解为了多个模态分量,通过评估原信号与模态分量信号的互相关程度,筛选了其有效模态,并对其进行了信号重构,实现了故障信号的降噪处理目的;然后,使用精细复合均值化代替了传统粗粒化方法,利用RCMMDE方法提取了重构信号的多尺度熵值,构成了特征样本集;最后,通过鲸鱼算法(WOA)对支持向量机(SVM)进行了超参数寻优,构建了最优的故障检测模型,并将特征样本集输入到WOA-SVM模型中进行了轴承故障诊断,并通过实验评估验证了模型的有效性。研究结果表明:该模型准确率达到99.67%,精确率、召回率等各项性能指标均在99%以上,并具有很强的鲁棒性。  相似文献   

17.
船舶旋转机械往往在多振源的环境中运转,如何对其振动信号进行有效的特征提取和降噪处理是研究热点。时域同步平均方法对振动信号的噪声抑制有较好的效果,但是该方法需要的键相信号难以获取,特定频率以外的故障信息会丢失且倍频信号波形会互相混叠,以上问题限制了该方法的适用性。提出了一种多尺度时域平均分解法,有效地克服了传统时域平均法存在的问题,并结合模糊熵特征选择对船舶风机进行了故障诊断,准确率与计算速度均优于EMD、EEMD和VMD方法。仿真数据分析与故障模拟试验证明了该方法的有效性。  相似文献   

18.
研究了一种基于LMD多尺度熵和概率神经网络的滚动轴承故障诊断方法。该方法将故障信号自适应地分解为若干乘积函数分量,然后将各分量的多尺度熵作为故障特征向量输入概率神经网络进行模式识别,实现了对损伤位置和损伤程度的诊断。将该方法与基于LMD时域统计量和神经网络的滚动轴承故障诊断方法进行了对比。实验结果表明,基于LMD多尺度熵和概率神经网络的方法能对滚动轴承故障进行有效的识别与诊断。  相似文献   

19.
声音信号采集具有非接触测量的优点,但易受到附近声源的影响而含有较大噪声,不利于故障特征识别。为此,提出一种自适应噪声的完全集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)和改进多尺度熵的声音信号故障诊断方法。该方法中CEEMDAN改善了EEMD(Ensemble Empirical Mode Decomposition,EEMD)的模态混叠,针对传统多尺度熵中粗粒时间序列长度不同和数据丢失的情况,提出一种平滑粗粒化处理的改进多尺度熵。将该方法应用于行星齿轮箱故障诊断中,可以对不同状态下的声音信号进行识别分类。通过数值仿真和实验数据分析,表明了提出的方法相对于其他方法的有效性和优越性。  相似文献   

20.
针对旋转机械设备的故障特征微弱和环境噪声强等问题,提出了一种基于短时滑移模糊熵和局部保留投影法(locality preserving projection,简称LPP)的故障特征提取方法。首先,通过对滑移截断短时序列的架构分析,引入多尺度复合模糊熵,获得信号在不同复合尺度下的特征信息和故障潜在特征,能准确反应信号复杂度和不确定性;其次,应用LPP流形降维并保留信号的局部数据特征,设计最优带通滤波器,对轴承振动信号进行故障冲击特征提取。仿真分析和实验数据结果验证了该方法在强背景噪声情况下降噪抑制方面的有效性,具有快速识别和提取滚动轴承的微弱冲击特征的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号